Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era

Abstract

Methanogenic microbes may be one of the most primitive organisms1, although it is uncertain when methanogens first appeared on Earth. During the Archaean era (before 2.5 Gyr ago), methanogens may have been important in regulating climate, because they could have provided sufficient amounts of the greenhouse gas methane to mitigate a severely frozen condition that could have resulted from lower solar luminosity2 during these times. Nevertheless, no direct geological evidence has hitherto been available in support of the existence of methanogens in the Archaean period, although circumstantial evidence is available in the form of 2.8-Gyr-old carbon-isotope-depleted kerogen3. Here we report crushing extraction and carbon isotope analysis of methane-bearing fluid inclusions in 3.5-Gyr-old hydrothermal precipitates from Pilbara craton, Australia. Our results indicate that the extracted fluids contain microbial methane with carbon isotopic compositions of less than -56‰ included within original precipitates. This provides the oldest evidence of methanogen (> 3.46 Gyr ago), pre-dating previous geochemical evidence by about 700 million years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photographs of hydrothermal silica dykes and fluid inclusions therein.
Figure 2: Carbon isotopic compositions of CH 4 and CO 2 in the fluid inclusions.

Similar content being viewed by others

References

  1. Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kasting, J. F. & Catling, D. Evolution of a habitable planet. Annu. Rev. Astron. Astrophys. 41, 429–463 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Hayes, J. M. in Early Life on Earth (ed. Bengtson, S.) 220–236 (Columbia Univ. Press, New York, 1994)

    Google Scholar 

  4. Buick, R. & Dunlop, J. S. R. Evaporitic sediments of Early Archean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology 37, 247–277 (1990)

    Article  ADS  Google Scholar 

  5. Kitajima, K., Maruyama, S., Utsunomiya, S. & Liou, J. G. Seafloor hydrothermal alteration at Archean mid-ocean ridge. J. Metamorph. Geol. 19, 583–600 (2001)

    Article  ADS  Google Scholar 

  6. Ueno, Y., Yoshioka, H., Maruyama, S. & Isozaki, Y. Carbon isotopes and petrography of kerogens in 3.5-Ga hydrothermal silica dikes in the North Pole area, Western Australia. Geochim. Cosmochim. Acta 68, 573–589 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Shen, Y., Buick, R. & Canfield, D. E. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410, 77–81 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Awramik, S. M., Schopf, J. W. & Walter, M. R. Filamentous fossil bacteria from the Archean of Western Australia. Precambr. Res. 20, 357–374 (1983)

    Article  ADS  Google Scholar 

  9. Ueno, Y., Isozaki, Y., Yurimoto, H. & Maruyama, S. Carbon isotopic signatures of individual Archean microfossils (?) from Western Australia. Int. Geol. Rev. 43, 196–212 (2001)

    Article  Google Scholar 

  10. Buick, R. Microfossil recognition in Archean rocks: an appraisal of spheroids and filaments from a 3500 M.Y. old chert-barite unit at North Pole, Western Australia. Palaios 5, 441–491 (1990)

    Article  ADS  Google Scholar 

  11. Garcia Ruiz, J. M. et al. Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302, 1194–1197 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Thorpe, R. I., Hickman, A. H., Davis, D. W., Mortensen, J. K. & Trendall, A. F. in The Archaean: Terrains, Processes and Metallogeny (eds Glover, J. E. & Ho, S. E.) 395–406 (Univ. Western Australia Publ. 9, Perth, 1992)

    Google Scholar 

  13. Nijman, W., de Bruijne, K. H. & Valkering, M. E. Growth fault control of Early Archaean cherts, barite mounds and chert-barite veins, North Pole Dome, Eastern Pilbara, Western Australia. Precambr. Res. 95, 247–274 (1999)

    Article  ADS  Google Scholar 

  14. Van Kranendonk, M. J. & Pirajno, F. Geochemistry of metabasalts and hydrothermal alteration zones associated with c. 3.45 Ga chert and barite deposits: implications for the geological setting of the Warrawoona Group, Pilbara Craton, Australia. Geochem. Explor. Envir. Anal. 4, 253–278 (2004)

    Article  CAS  Google Scholar 

  15. Brasier, M. D. et al. Questioning the evidence for Earth's oldest fossils. Nature 416, 76–81 (2002)

    Article  ADS  PubMed  Google Scholar 

  16. Pinti, D. L., Hashizume, K. & Matsuda, J. Nitrogen and argon signatures in 3.8 to 2.8 Ga metasediments: clues on the chemical state of the Archean ocean and the deep biosphere. Geochim. Cosmochim. Acta 65, 2301–2315 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Roedder, E. Fluid Inclusions (Reviews in Mineralogy vol. 12, Mineralogical Society of America, Washington DC, 1984).

  18. Schoell, M. Genetic characterization of natural gas. Am. Assoc. Petrol. Geol. Bull. 67, 2225–2238 (1983)

    CAS  Google Scholar 

  19. Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Valentine, D. L., Chidthaisong, A., Rice, A., Reeburgh, W. S. & Tyler, S. C. Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens. Geochim. Cosmochim. Acta 68, 1571–1590 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Clayton, C. Carbon isotope fractionation during natural gas generation from kerogen. Mar. Petrol. Geol. 8, 232–240 (1991)

    Article  CAS  Google Scholar 

  22. Horita, J. & Berndt, M. E. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285, 1055–1057 (1999)

    Article  CAS  PubMed  Google Scholar 

  23. McCollom, T. M. & Seewald, J. S. A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim. Cosmochim. Acta 65, 3769–3778 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Sherwood Lollar, B., Westgate, T. D., Ward, J. A., Slater, G. F. & Lacrampe-Couloume, G. Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs. Nature 416, 522–524 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Welhan, J. A. Origin of methane in hydrothermal systems. Chem. Geol. 71, 183–198 (1988)

    Article  ADS  CAS  Google Scholar 

  26. Charlou, J. L., Donval, J. P., Fouquet, Y., Jean-Baptiste, P. & Holm, N. G. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chem. Geol. 191, 345–359 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Richet, P., Bottinga, Y. & Javoy, M. A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope fractionation among gaseous molecules. Annu. Rev. Earth Planet. Sci. 5, 65–110 (1977)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Terabayashi, Y. Kato, K. Okamoto, T. Ota, T. Kabashima, K. Kitajima and K. Shimizu for assistance in field work, A. Thorne, K. J. McNamara and A. H. Hickman for field collaboration, H. Nara, Y. Matsui and M. Nishizawa for assisting in the construction of the vacuum line, and R. Buick and J. F. Kasting for comments on early versions of this manuscript. This research was supported by the 21st Century COE Program ‘How to build habitable planets,’ Tokyo Institute of Technology, sponsored by the Ministry of Education, Culture, Sports, Technology and Science, Japan. Y.U. thanks the Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichiro Ueno.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1, 2 and 3 with legends, which show sample locality map, more detailed photomicrographs of the fluid inclusions, and Universal Tree of Life with age constraints, respectively. (DOC 1105 kb)

Supplementary Notes

This file contains Supplementary Methods, Supplementary Figures 3 and 4 with legends, and Supplementary Tables 1 and 2, which describe methods and results of the laser Raman and carbon isotope analyses. Supplementary Data includes the list of modern hydrothermal vent sites compiled in Fig. 2c of the main text with data source used for the compilation. (PDF 370 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueno, Y., Yamada, K., Yoshida, N. et al. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440, 516–519 (2006). https://doi.org/10.1038/nature04584

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04584

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing