Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Significant primordial star formation at redshifts z ≈ 3–4

An Erratum to this article was published on 04 May 2006

Abstract

Four recent observational results have challenged our understanding of high-redshift galaxies, as they require the presence of far more ultraviolet photons than should be emitted by normal stellar populations. First, there is significant ultraviolet emission1 from Lyman break galaxies (LBGs) at wavelengths shorter than 912 Å. Second, there is strong Lyman α emission2 from extended ‘blobs’ with little or no associated apparent ionizing continuum. Third, there is a population of galaxies with unusually strong Lyman α emission lines3. And fourth, there is a strong He ii (1,640 Å) emission line4 in a composite of LBGs. The proposed explanations for the first three observations are internally inconsistent, and the fourth puzzle has remained hitherto unexplained. Here we show that all four problems are resolved simultaneously if 10–30 per cent of the stars in many galaxies at z ≈ 3–4 are mainly primordial—unenriched by elements heavier than helium (‘metals’). Most models of hierarchical galaxy formation assume efficient intragalactic metal mixing, and therefore do not predict5,6,7,8,9 metal-free star formation at redshifts significantly below z ≈ 5. Our results imply that micromixing of metals within galaxies is inefficient on an approximately gigayear timescale, a conclusion that can be verified with higher-resolution simulations, and future observations of the He ii emission line.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Lyman break galaxies stacked observed spectrum and best-fit population synthesis models.
Figure 2: Colour distributions of the Ly α blobs.

References

  1. Steidel, C. C., Pettini, M. & Adelberger, K. L. Lyman-continuum emission from galaxies at z3.4. Astrophys. J. 546, 665–671 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Matsuda, Y. et al. A Subaru search for Lyα blobs in and around the protocluster region at redshift z = 3.1. Astrophys. J. 128, 569–584 (2004)

    CAS  Google Scholar 

  3. Malhotra, S. & Rhoads, J. E. Large equivalent width Lyα line emission at z = 4.5: young galaxies in a young Universe? Astrophys. J. 565, L71–L74 (2002)

    Article  ADS  Google Scholar 

  4. Shapley, A. E., Steidel, C. C., Pettini, M. & Adelberger, K. L. Rest-frame ultraviolet spectra of z3 Lyman break galaxies. Astrophys. J. 588, 65–89 (2003)

    Article  ADS  Google Scholar 

  5. Madau, P., Ferrara, A. & Rees, M. J. Early metal enrichment of the intergalactic medium by pregalactic outflows. Astrophys. J. 555, 92–105 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Scannapieco, E., Schneider, R. & Ferrara, A. The detectability of the first stars and their cluster enrichment signatures. Astrophys. J. 589, 35–52 (2003)

    Article  ADS  Google Scholar 

  7. Norman, M. L., O'Shea, B. W. & Paschos, P. Did massive primordial stars preenrich the Lyα forest? Astrophys. J. 601, L115–L118 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Yoshida, N., Bromm, V. & Hernquist, L. The era of massive Population III stars: cosmological implications and self-termination. Astrophys. J. 605, 579–590 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Bromm, V. & Loeb, A. High-redshift gamma-ray bursts from Population III progenitors. Preprint at http://arXiv.org/astro-ph/0509303 (2005).

  10. Tumlinson, J. & Shull, J. M. Zero-metallicity stars and the effects of the first stars on reionization. Astrophys. J. 528, L65–L69 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Bromm, V., Kudritzki, R. P. & Loeb, A. Generic spectrum and ionization efficiency of a heavy initial mass function for the first stars. Astrophys. J. 552, 464–472 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Hui, L., Haiman, Z., Zaldarriaga, M. & Alexander, T. Connections between the cosmic baryon fraction, the extragalactic ionizing background, and Lyman break galaxies. Astrophys. J. 564, 525–533 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Haehnelt, M., Madau, P., Kudritzki, R. & Haardt, F. An ionizing ultraviolet background dominated by massive stars. Astrophys. J. 549, L151–L154 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Bromm, V., Ferrara, A., Coppi, P. S. & Larson, R. B. The fragmentation of pre-enriched primordial objects. Mon. Not. R. Astron. Soc. 328, 969–976 (2001)

    Article  ADS  Google Scholar 

  15. Schneider, R., Ferrara, A., Natarajan, P. & Omukai, K. First stars, very massive black holes, and metals. Astrophys. J. 571, 30–39 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Leitherer, C. et al. Starburst 99: Synthesis models for galaxies with active star formation. Astrophys. J. Suppl. 123, 3–30 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Schaerer, D. The transition from Population III to normal galaxies: Lyα and He II emission and the ionising properties of high redshift starburst galaxies. Astron. Astrophys. 397, 527–538 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Abel, T., Bryan, G. L. & Norman, M. L. The formation of the first star in the Universe. Science 295, 93–95 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Bromm, V., Coppi, P. S. & Larson, R. B. The formation of the first stars. I. The primordial star-forming cloud. Astrophys. J. 564, 23–51 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Marigo, P. et al. Zero-metallicity stars. II. Evolution of very massive objects with mass loss. Astron. Astrophys. 399, 617–630 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Meynet, G., Ekstrom, S. & Maeder, A. The early star generations: the dominant effect of rotation on the CNO yields. Preprint at http://arXiv.org/astro-ph/0510560 (2005).

  22. Kudritzki, R. P. Line-driven winds, ionizing fluxes, and ultraviolet spectra of hot stars at extremely low metallicity. I. Very massive O stars. Astrophys. J. 577, 389–408 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Dawson, S. et al. Spectroscopic properties of the z = 4.5 Lyα emitters. Astrophys. J. 617, 707–717 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Nagao, T. et al. An observational pursuit for population III stars in a Lyα emitter at z = 6.33 through He II emission. Astrophys. J. 631, L5–L8 (2005)

    Article  ADS  CAS  Google Scholar 

  25. Christlieb, N. et al. A stellar relic from the early Milky Way. Nature 419, 904–906 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Beers, T. C. & Christlieb, N. The discovery and analysis of very metal-poor stars in the galaxy. Annu. Rev. Astron. Astrophys. 43, 531–580 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Schaerer, D. & de Koter, A. Combined stellar structure and atmosphere models for massive stars. III. Spectral evolution and revised ionizing fluxes of O3-B0 stars. Astron. Astrophys. 322, 598–610 (1997)

    ADS  Google Scholar 

  28. Najarro, F., Kudritzki, R. P., Cassinelli, J. P., Stahl, O. & Hillier, D. J. Stellar winds and the EUV continuum excess of early B-giants. Astron. Astrophys. 306, 890–892 (1996)

    ADS  Google Scholar 

  29. Jimenez, R., MacDonald, J., Dunlop, J. S., Padoan, P. & Peacock, J. A. Synthetic stellar populations: single stellar populations, stellar interior models and primordial protogalaxies. Mon. Not. R. Astron. Soc. 349, 240–254 (2004)

    Article  ADS  Google Scholar 

  30. Kudritzki, R. P. et al. Discovery of nine Lyalpha emitters at redshift z3.1 using narrowband imaging and VLT spectroscopy. Astrophys. J. 536, 19–30 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Y. Matsuda and T. Yamada for providing the unpublished raw colour data that appears in Fig. 2, D. Schaerer for providing pop-III spectra in electronic form, and A. Shapley for useful discussions. We also thank T. Beers for pointing out the C trends in low metallicity stars and suggesting that these could be explained by our model. R.J. and Z.H. gratefully acknowledge financial support from NSF and NASA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raul Jimenez or Zoltan Haiman.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Discussion

Additional discussion on modeling the 912AA break from the spectra of Lyman break galaxies. (PDF 29 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jimenez, R., Haiman, Z. Significant primordial star formation at redshifts z ≈ 3–4. Nature 440, 501–504 (2006). https://doi.org/10.1038/nature04580

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04580

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing