Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The influence of the surface migration of gold on the growth of silicon nanowires

Abstract

Interest in nanowires continues to grow, fuelled in part by applications in nanotechnology1,2,3,4,5. The ability to engineer nanowire properties makes them especially promising in nanoelectronics6,7,8,9. Most silicon nanowires are grown using the vapour–liquid–solid (VLS) mechanism, in which the nanowire grows from a gold/silicon catalyst droplet during silicon chemical vapour deposition10,11,12,13. Despite over 40 years of study, many aspects of VLS growth are not well understood. For example, in the conventional picture the catalyst droplet does not change during growth, and the nanowire sidewalls consist of clean silicon facets10,11,12,13. Here we demonstrate that these assumptions are false for silicon nanowires grown on Si(111) under conditions where all of the experimental parameters (surface structure, gas cleanliness, and background contaminants) are carefully controlled. We show that gold diffusion during growth determines the length, shape, and sidewall properties of the nanowires. Gold from the catalyst droplets wets the nanowire sidewalls, eventually consuming the droplets and terminating VLS growth. Gold diffusion from the smaller droplets to the larger ones (Ostwald ripening) leads to nanowire diameters that change during growth. These results show that the silicon nanowire growth is fundamentally limited by gold diffusion: smooth, arbitrarily long nanowires cannot be grown without eliminating gold migration.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: 5-eV LEEM images of the coarsening of Au catalyst droplets on Si(111).
Figure 2: Scanning electron microscope images of Si nanowires grown on Si(111) recorded with a 42° angle of incidence.
Figure 3: In situ UHVTEM images recorded during the growth of Si nanowires at 655 °C in 10 -6  torr disilane.
Figure 4: SEM images of Si nanowires.

References

  1. 1

    Huang, Y. et al. Logic gates and computation from assembled nanowire building blocks. Science 294, 1313–1317 (2001)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Duan, X., Huang, Y., Cui, Y., Wang, J. & Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Duan, X., Huang, Y. & Lieber, C. M. Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Lett. 2, 487–490 (2002)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Cui, Y., Zhong, Z., Wang, D., Wang, W. U. & Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 3, 149–152 (2003)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Wu, Y. et al. Controlled growth and structure of molecular-scale silicon nanowires. Nano Lett. 4, 433–436 (2004)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Lauhon, L. J., Gudiksen, M. S., Wang, D. & Lieber, C. M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 57–61 (2002)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Björk, M. et al. One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80, 1058–1060 (2002)

    ADS  Article  Google Scholar 

  8. 8

    Björk, M. et al. One-dimensional steeplechase for electrons realized. Nano Lett. 2, 87–89 (2002)

    ADS  Article  Google Scholar 

  9. 9

    Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C. & Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Wagner, R. S. & Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Wagner, R. S. in Whisker Technology (ed. Levitt, A. P.) 47–119 (Wiley- Interscience, New York, 1970)

    Google Scholar 

  12. 12

    Givargizov, E. I. Fundamental aspects of VLS growth. J. Cryst. Growth 31, 20–30 (1975)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Law, M., Goldberger, J. & Yang, P. Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34, 83–122 (2004)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Tromp, R. M. & Reuter, M. C. Design of a new photoemission/low-energy electron microscope for surface studies. Ultramicrosccopy 36, 99–106 (1991)

    Article  Google Scholar 

  15. 15

    Nagao, T. et al. Structural phase transitions of Si(111) - √(3) × √(3) - R30°-Au: Phase transitions in domain-wall configurations. Phys. Rev. B 57, 10100–10109 (1998)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Zhang, H. M., Balasubramanian, T. & Uhrberg, R. I. G. Core-level photoelectron spectroscopy study of the Au/Si(111) 5 × 2, α - √(3) × √(3), β - √(3) × √(3), and 6 × 6 surfaces. Phys. Rev. B 65, 035314 (2001)

    ADS  Article  Google Scholar 

  17. 17

    Yagi, K. Reflection electron-microscopy—studies of surface structures and surface dynamic processes. Surf. Sci. Rep. 17, 305–362 (1993)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Stolwijk, N. A., Schuster, B., Hölzl, J., Mehrer, H. & Frank, W. Diffusion and solubility of gold in silicon. Physica B 116, 335–342 (1983)

    CAS  Article  Google Scholar 

  19. 19

    Lee, S. T., Wang, N. & Lee, C. S. Semiconductor nanowires: synthesis, structure and properties. Mater. Sci. Eng. A 286, 16–23 (2000)

    Article  Google Scholar 

  20. 20

    Kolb, F. M. et al. Analysis of silicon nanowires grown by combining SiO evaporation with the VLS mechanism. J. Electrochem. Soc. 151, G472–C475 (2004)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. B. Hannon.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hannon, J., Kodambaka, S., Ross, F. et al. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69–71 (2006). https://doi.org/10.1038/nature04574

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links