Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The evolution of galaxies from primeval irregulars to present-day ellipticals

Abstract

Galaxy formation is believed to proceed in a ‘bottom up’ manner, starting with the formation of small clumps of gas and stars that then merge hierarchically into giant systems1,2. The baryonic gas loses thermal energy by radiative cooling and falls towards the centres of the new galaxies, while supernovae blow gas out3,4. Any realistic model therefore requires a proper treatment of these processes, but hitherto this has been far from satisfactory5. Here we report a simulation that follows evolution from the earliest stages of galaxy formation through the period of dynamical relaxation, at which point the resulting galaxy is in its final form. The bubble structures of gas revealed in our simulation (for times of less than 3 × 108 years) resemble closely high-redshift Lyman-α emitters6,7. After 109 years, these bodies are dominated by stellar continuum radiation and then resemble the Lyman break galaxies8,9, which are high-redshift star-forming galaxies. At this point, the abundance of elements heavier than helium (‘metallicity’) appears to be solar. After 1.3 × 1010 years, these galaxies resemble present-day ellipticals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simulation of the first 1 Gyr of a proto-galaxy with total mass 10 11 M (1 Gyr = 10 9  yr, M indicates solar mass).
Figure 2: The formation epochs ( t ) of stars as a function of stellar oxygen abundance, [O/H].
Figure 3: Emissions and star formation history.
Figure 4: Comparison of the simulation and observation.

Similar content being viewed by others

References

  1. Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxies and large-scale structure with cold dark matter. Nature 311, 517–525 (1984)

    Article  ADS  CAS  Google Scholar 

  2. Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Mathews, W. G. & Baker, J. C. Galactic winds. Astrophys. J. 170, 241–259 (1971)

    Article  ADS  CAS  Google Scholar 

  4. Mori, M., Ferrara, A. & Madau, P. Early metal enrichment by pregalactic outflows. II. Three-dimensional simulations of blow-away. Astrophys. J. 571, 40–55 (2002)

    Article  ADS  Google Scholar 

  5. Mori, M., Umemura, M. & Ferrara, A. The nature of Lyα blobs: supernova-dominated primordial galaxies. Astrophys. J. 613, L97–L100 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Dey, A. et al. A galaxy at z = 5.34. Astrophys. J. 498, L93–L97 (1998)

    Article  ADS  Google Scholar 

  7. Taniguchi, Y. et al. Lyman α emitters beyond redshift 5: The dawn of galaxy formation. J. Korean Astron. Soc. 36, 123–144 (2003)

    Article  ADS  Google Scholar 

  8. Steidel, C. C. et al. Spectroscopic confirmation of a population of normal star-forming galaxies at redshifts z > 3. Astrophys. J. 462, L17–L21 (1996)

    Article  ADS  Google Scholar 

  9. Giavalisco, M. Lyman-break galaxies. Annu. Rev. Astron. Astrophys. 40, 579–641 (2002)

    Article  ADS  Google Scholar 

  10. Mori, M., Yoshii, Y., Tsujimoto, T. & Nomoto, K. The evolution of dwarf galaxies with star formation in an outward-propagating supershell. Astrophys. J. 478, L21–L24 (1997)

    Article  ADS  CAS  Google Scholar 

  11. Sommer-Larsen, J., Götz, M. & Portinari, L. Galaxy formation: Cold dark matter, feedback and the Hubble sequence. Astrophys. J. 596, 47–66 (2003)

    Article  ADS  Google Scholar 

  12. Matsuda, Y. et al. A SUBARU search for Lyα blobs in and around the protocluster region at redshift z = 3.1. Astron. J. 128, 569–584 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Taniguchi, Y. et al. The SUBARU Deep Field Project: Lyman α emitters at a redshift of 6.6. Publ. Astron. Soc. Jpn 57, 165–182 (2005)

    Article  ADS  CAS  Google Scholar 

  14. Haiman, Z., Spaans, M. & Quataert, E. Lyα cooling radiation from high-redshift halos. Astrophys. J. 537, L5–L8 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Fardal, M. A. et al. Cooling radiation and the Lyα luminosity of forming galaxies. Astrophys. J. 562, 605–617 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Pettini, M. et al. The rest-frame optical spectra of Lyman break galaxies: star formation, extinction, abundances, and kinematics. Astrophys. J. 554, 981–1000 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Adelberger, K. L., Steidel, C. C., Shapley, A. E. & Pettini, M. Galaxies and intergalactic matter at redshift z = 3: Overview. Astrophys. J. 584, 45–75 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Brandt, W. N. et al. The Chandra Deep Field-North Survey. VII. X-ray emission from Lyman break galaxies. Astrophys. J. 558, L5–L9 (2001)

    Article  ADS  Google Scholar 

  19. Nandra, K. et al. X-ray properties of Lyman break galaxies in the Hubble Deep Field-North region. Astrophys. J. 576, 625–639 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Shapley, A. E. et al. Evidence for solar metallicities in massive star-forming galaxies at z2. Astrophys. J. 612, 108–121 (2004)

    Article  ADS  CAS  Google Scholar 

  21. de Vaucouleurs, G. Recherches sur les nébuleuses extragalactiques. Ann. Astrophys. 11, 247–287 (1948)

    ADS  Google Scholar 

  22. Mori, M., Yoshii, Y. & Nomoto, K. Dissipative process as a mechanism of differentiating internal structures between dwarf and normal elliptical galaxies in a cold dark matter universe. Astrophys. J. 511, 585–594 (1999)

    Article  ADS  CAS  Google Scholar 

  23. Bower, R. G., Lucey, J. R. & Ellis, R. S. Precision photometry of early type galaxies in the Coma and Virgo clusters - a test of the universality of the colour / magnitude relation—Part two - analysis. Mon. Not. R. Astron. Soc. 254, 601–613 (1992)

    Article  ADS  Google Scholar 

  24. Djorgovski, S. & Davis, M. Fundamental properties of elliptical galaxies. Astrophys. J. 313, 59–68 (1987)

    Article  ADS  Google Scholar 

  25. Burstein, D., Bender, R., Faber, S. & Nolthenius, R. Global relationships among the physical properties of stellar systems. Astron. J. 114, 1365–1392 (1997)

    Article  ADS  Google Scholar 

  26. Barnes, J. & Efstathiou, G. Angular momentum from tidal torques. Astrophys. J. 319, 575–600 (1987)

    Article  ADS  Google Scholar 

  27. Navarro, J. F., Frenk, C. S. & White, S. D. M. A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997)

    Article  ADS  Google Scholar 

  28. Sutherland, R. S. & Dopita, M. A. Cooling functions for low-density astrophysical plasmas. Astrophys. J. 88 (Suppl.), 253–327 (1993)

    Article  ADS  CAS  Google Scholar 

  29. Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161–167 (1955)

    Article  ADS  Google Scholar 

  30. Fioc, M. & Rocca-Volmerange, B. PEGASE: a UV to NIR spectral evolution model of galaxies. Application to the calibration of bright galaxy counts. Astron. Astrophys. 326, 950–962 (1997)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank Y. Matsuda and his collaborators for use of observational data obtained by the Subaru Telescope, and are grateful to M. Rich, M. Malkan, I. Saviane, Y. Yoshii and R. Ellis for suggestions. M.M. thanks the University of California Los Angeles for hospitality, and acknowledges the support of the Japan Society for the Promotion of Science and of the Promotion and Mutual Aid Corporation for Private Schools of Japan. M.U. acknowledges the support of the Ministry of Education, Culture, Sports, Science, and Technology of Japan. The simulations were performed with the Earth Simulator at JAMSTEC, the SPACE at Senshu University, and the computational facilities including CP-PACS at CCS in the University of Tsukuba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Mori.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

This document describes the initial condition of the present model and our dynamical, chemical, and spectrophotometric scheme to explore the formation and evolution of elliptical galaxies including star formation and supernova feedback. (DOC 113 kb)

Supplementary Video 1

This animation visualizes the logarithmic gas density distribution of the simulated galaxy. Simulation box has a physical size of 134 kpc and the number density ranges from 10-4 cm-3 (red) to 1 cm-3 (blue). (MPG 13165 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, M., Umemura, M. The evolution of galaxies from primeval irregulars to present-day ellipticals. Nature 440, 644–647 (2006). https://doi.org/10.1038/nature04553

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04553

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing