Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum supercurrent transistors in carbon nanotubes

Abstract

Electronic transport through nanostructures is greatly affected by the presence of superconducting leads1,2,3. If the interface between the nanostructure and the superconductors is sufficiently transparent, a dissipationless current (supercurrent) can flow through the device owing to the Josephson effect4,5. A Josephson coupling, as measured by the zero-resistance supercurrent, has been obtained using tunnel barriers, superconducting constrictions, normal metals and semiconductors. The coupling mechanisms vary from tunnelling to Andreev reflection5,6,7,8. The latter process has hitherto been observed only in normal-type systems with a continuous density of electronic states. Here we investigate a supercurrent flowing through a discrete density of states—that is, the quantized single particle energy states of a quantum dot9, or ‘artificial atom’, placed between superconducting electrodes. For this purpose, we exploit the quantum properties of finite-sized carbon nanotubes10. By means of a gate electrode, successive discrete energy states are tuned on- and off-resonance with the Fermi energy in the superconducting leads, resulting in a periodic modulation of the critical current and a non-trivial correlation between the conductance in the normal state and the supercurrent. We find, in good agreement with existing theory11, that the product of the critical current and the normal state resistance becomes an oscillating function, in contrast to being constant as in previously explored regimes.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Measurement scheme and basic sample characterization.
Figure 2: Quantum supercurrent transistor.
Figure 3: Correlation between critical current and normal state conductance and modulation of the I C R N product.

References

  1. de Gennes, P. G. Boundary effects in superconductors. Rev. Mod. Phys. 36, 225–237 (1964)

    ADS  CAS  Article  Google Scholar 

  2. Ralph, D. C., Black, C. T. & Tinkham, M. Spectroscopic measurements of discrete electronic states in single metal particles. Phys. Rev. Lett. 74, 3241–3244 (1995)

    ADS  CAS  Article  Google Scholar 

  3. von Delft, J. & Ralph, D. C. Spectroscopy of discrete energy levels in ultrasmall metallic grains. Phys. Rep. 345, 61–173 (2001)

    ADS  CAS  Article  Google Scholar 

  4. Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962)

    ADS  Article  Google Scholar 

  5. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, Singapore, 1996)

    Google Scholar 

  6. Andreev, A. F. The thermal conductivity of the intermediate state in superconductors. Sov. Phys. JETP 19, 1228–1231 (1964)

    Google Scholar 

  7. Likharev, K. K. Superconducting weak links. Rev. Mod. Phys. 51, 101–159 (1979)

    ADS  Article  Google Scholar 

  8. Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting micro-constrictions—excess current, charge imbalance, and super-current conversion. Phys. Rev. B 25, 4515–4532 (1982)

    ADS  CAS  Article  Google Scholar 

  9. Sohn, L. L., Kouwenhoven, L. P. & Schön, G. (eds) Mesoscopic Electron Transport (Kluwer, Dordrecht, 1997)

  10. Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996)

    Google Scholar 

  11. Beenakker, C. W. J. & van Houten, H. Single-electron Tunneling and Mesoscopic Devices (eds Koch, H. & Lübbig, H.) see also http://xxx.lanl.gov/abs/cond-mat/0111505 (2001) 175–179 (Springer, Berlin, 1992)

    Book  Google Scholar 

  12. Kouwenhoven, L. & Glazman, L. Revival of the Kondo effect. Phys. World 14, 33–38 (2001)

    CAS  Article  Google Scholar 

  13. Jarillo-Herrero, P. et al. Orbital Kondo effect in carbon nanotubes. Nature 434, 484–488 (2005)

    ADS  CAS  Article  Google Scholar 

  14. Liang, W. J. et al. Fabry-Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001)

    ADS  CAS  Article  Google Scholar 

  15. Buitelaar, M. R., Bachtold, A., Nussbaumer, T., Iqbal, M. & Schonenberger, C. Multiwall carbon nanotubes as quantum dots. Phys. Rev. Lett. 88, 156801 (2002)

    ADS  CAS  Article  Google Scholar 

  16. Kasumov, A. Y. et al. Supercurrents through single-walled carbon nanotubes. Science 284, 1508–1511 (1999)

    ADS  CAS  Article  Google Scholar 

  17. Morpurgo, A. F., Kong, J., Marcus, C. M. & Dai, H. Gate-controlled superconducting proximity effect in carbon nanotubes. Science 286, 263–265 (1999)

    CAS  Article  Google Scholar 

  18. Buitelaar, M. R., Nussbaumer, T. & Schonenberger, C. Quantum dot in the Kondo regime coupled to superconductors. Phys. Rev. Lett. 89, 256801 (2002)

    ADS  CAS  Article  Google Scholar 

  19. Haruyama, J. et al. End-bonding multiwalled carbon nanotubes in alumina templates: Superconducting proximity effect. Appl. Phys. Lett. 84, 4714–4716 (2004)

    ADS  CAS  Article  Google Scholar 

  20. Buitelaar, M. R. et al. Multiple Andreev reflections in a carbon nanotube quantum dot. Phys. Rev. Lett. 91, 057005 (2003)

    ADS  CAS  Article  Google Scholar 

  21. Takayanagi, H. & Kawakami, T. Superconducting proximity effect in the native inversion layer on InAs. Phys. Rev. Lett. 54, 2449–2452 (1985)

    ADS  CAS  Article  Google Scholar 

  22. McEuen, P. L. Single-wall carbon nanotubes. Phys. World 13, 31–36 (2000)

    CAS  Article  Google Scholar 

  23. Doh, Y. J. et al. Tunable supercurrent through semiconductor nanowires. Science 309, 272–275 (2005)

    ADS  CAS  Article  Google Scholar 

  24. Liang, W. J., Bockrath, M. & Park, H. Shell filling and exchange coupling in metallic single-walled carbon nanotubes. Phys. Rev. Lett. 88, 126801 (2002)

    ADS  Article  Google Scholar 

  25. Sapmaz, S. et al. Electronic excitation spectrum of metallic carbon nanotubes. Phys. Rev. B 71, 153402 (2005)

    ADS  Article  Google Scholar 

  26. Galaktionov, A. V. & Zaikin, A. D. Quantum interference and supercurrent in multiple-barrier proximity structures. Phys. Rev. B 65, 184507 (2002)

    ADS  Article  Google Scholar 

  27. Joyez, P., Lafarge, P., Filipe, A., Esteve, D. & Devoret, M. H. Observation of parity-induced suppression of Josephson tunneling in the superconducting single-electron transistor. Phys. Rev. Lett. 72, 2458–2461 (1994)

    ADS  CAS  Article  Google Scholar 

  28. Glazman, L. I. & Matveev, K. A. Resonant Josephson current through Kondo impurities in a tunnel barrier. JETP Lett. 49, 659–662 (1989)

    ADS  Google Scholar 

  29. Choi, M. S., Lee, M., Kang, K. & Belzig, W. Kondo effect and Josephson current through a quantum dot between two superconductors. Phys. Rev. B 70, 020502 (2004)

    ADS  Article  Google Scholar 

  30. Babic, B. & Schonenberger, C. Observation of Fano resonances in single-wall carbon nanotubes. Phys. Rev. B 70, 195408 (2004)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank Yu. V. Nazarov, C. W. J. Beenakker, W. Belzig, S. De Franceschi and Y-J. Doh for discussions and C. Dekker for the use of nanotube growth facilities. Financial support was obtained from the Japanese International Cooperative Research Project (ICORP) and the Dutch Fundamenteel Onderzoek der Materie (FOM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Jarillo-Herrero.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains the Supplementary Discussion and Supplementary Figures 1-6.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jarillo-Herrero, P., van Dam, J. & Kouwenhoven, L. Quantum supercurrent transistors in carbon nanotubes. Nature 439, 953–956 (2006). https://doi.org/10.1038/nature04550

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04550

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing