Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Eukaryotic evolution, changes and challenges

Abstract

The idea that some eukaryotes primitively lacked mitochondria and were true intermediates in the prokaryote-to-eukaryote transition was an exciting prospect. It spawned major advances in understanding anaerobic and parasitic eukaryotes and those with previously overlooked mitochondria. But the evolutionary gap between prokaryotes and eukaryotes is now deeper, and the nature of the host that acquired the mitochondrion more obscure, than ever before.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The general outline of eukaryote evolution provided by rooted rRNA trees.
Figure 2: Enzymes and pathways found in various manifestations of mitochondria.
Figure 3: Schematic tree of newer hypotheses for phylogenetic relationships among major groups of eukaryotes.
Figure 4: Models for eukaryote origins that are, in principle, testable with genome data.

Similar content being viewed by others

References

  1. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Leipe, D. D., Gunderson, J. H., Nerad, T. A. & Sogin, M. L. Small subunit ribosomal RNA of Hexamita inflata and the quest for the first branch in the eukaryotic tree. Mol. Biochem. Parasitol. 59, 41–48 (1993)

    CAS  PubMed  Google Scholar 

  3. Hashimoto, T., Nakamura, Y., Kamaishi, T. & Hasegawa, M. Early evolution of eukaryotes inferred from the amino acid sequences of elongation factors 1α and 2. Arch. Protistenkd. 148, 287–295 (1997)

    Google Scholar 

  4. Cavalier-Smith, T. in Endocytobiology II (eds Schwemmler, W. & Schenk, H. E. A.) 1027–1034 (De Gruyter, Berlin, 1983)

    Google Scholar 

  5. Gray, M. W., Lang, B. F. & Burger, G. Mitochondria of protists. Annu. Rev. Genet. 38, 477–524 (2004)

    CAS  PubMed  Google Scholar 

  6. Cavalier-Smith, T. in Endocytobiology II (eds Schwemmler, W. & Schenk, H. E. A.) 265–279 (De Gruyter, Berlin, 1983)

    Google Scholar 

  7. Pfanner, N. & Geissler, A. Versatility of the mitochondrial protein import machinery. Nature Rev. Mol. Cell Biol. 2, 339–349 (2001)

    CAS  Google Scholar 

  8. Esser, C. et al. A genome phylogeny for mitochondria among α-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol. Biol. Evol. 21, 1643–1660 (2004)

    CAS  PubMed  Google Scholar 

  9. Timmis, J. N., Ayliffe, M. A., Huang, C. Y. & Martin, W. Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nature Rev. Genet. 5, 123–135 (2004)

    CAS  PubMed  Google Scholar 

  10. Clark, C. G. & Roger, A. J. Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc. Natl Acad. Sci. USA 92, 6518–6521 (1995)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roger, A. J. Reconstructing early events in eukaryotic evolution. Am. Nat. 154, S146–S163 (1999)

    CAS  PubMed  Google Scholar 

  12. Abrahamsen, M. S. et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304, 441–445 (2004)

    ADS  CAS  PubMed  Google Scholar 

  13. Boxma, B. et al. An anaerobic mitochondrion that produces hydrogen. Nature 434, 74–79 (2005)

    ADS  CAS  PubMed  Google Scholar 

  14. Müller, M. in Molecular Medical Parasitology (eds Marr, J. J., Nilsen, T. W. & Komuniecki, R. W.) 125–139 (Academic, Amsterdam, 2003)

    Google Scholar 

  15. Katinka, M. D. et al. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414, 450–453 (2001)

    ADS  CAS  PubMed  Google Scholar 

  16. Tielens, A. G., Rotte, C., van Hellemond, J. J. & Martin, W. Mitochondria as we don't know them. Trends Biochem. Sci. 27, 564–572 (2002)

    CAS  PubMed  Google Scholar 

  17. Komuniecki, R. W. & Tielens, A. G. M. in Molecular Medical Parasitology (eds Marr, J. J., Nilsen, T. W. & Komuniecki, R.) 339–358 (Academic, Amsterdam, 2003)

    Google Scholar 

  18. Darwin, C. The Origin of Species Reprint edn (Penguin Books, London, 1968)

    Google Scholar 

  19. Müller, M. The hydrogenosome. J. Gen. Microbiol. 139, 2879–2889 (1993)

    PubMed  Google Scholar 

  20. van der Giezen, M. et al. Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: A common origin for both organelles. EMBO J. 21, 572–579 (2002)

    CAS  PubMed  Google Scholar 

  21. Tjaden, J. et al. A divergent ADP/ATP carrier in the hydrogenosomes of Trichomonas gallinae argues for an independent origin of these organelles. Mol. Microbiol. 51, 1439–1446 (2004)

    CAS  PubMed  Google Scholar 

  22. Embley, T. M. et al. Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 55, 387–395 (2003)

    CAS  PubMed  Google Scholar 

  23. Dyall, S. D. et al. Presence of a member of the mitochondrial carrier family in hydrogenosomes: Conservation of membrane-targeting pathways between hydrogenosomes and mitochondria. Mol. Cell. Biol. 20, 2488–2497 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sutak, R. et al. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc. Natl Acad. Sci. USA 101, 10368–10373 (2004)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hrdy, I. et al. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432, 618–622 (2004)

    ADS  CAS  PubMed  Google Scholar 

  26. Schnarrenberger, C. & Martin, W. Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants. A case study of endosymbiotic gene transfer. Eur. J. Biochem. 269, 868–883 (2002)

    CAS  PubMed  Google Scholar 

  27. Fenchel, T. & Finlay, B. J. Ecology and Evolution in Anoxic Worlds (eds May, R. M. & Harvey, P. H.) (Oxford Univ. Press, Oxford, 1995)

    Google Scholar 

  28. Roger, A. J. & Silberman, J. D. Cell evolution: Mitochondria in hiding. Nature 418, 827–829 (2002)

    ADS  CAS  PubMed  Google Scholar 

  29. Whatley, J. M., John, P. & Whatley, F. R. From extracellular to intracellular: The establishment of mitochondria and chloroplasts. Proc. R. Soc. Lond. B 204, 165–187 (1979)

    ADS  CAS  PubMed  Google Scholar 

  30. Dyall, S. D., Brown, M. T. & Johnson, P. J. Ancient invasions: From endosymbionts to organelles. Science 304, 253–257 (2004)

    ADS  CAS  PubMed  Google Scholar 

  31. Dyall, S. D. et al. Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature 431, 1103–1107 (2004)

    ADS  CAS  PubMed  Google Scholar 

  32. Tovar, J., Fischer, A. & Clark, C. G. The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol. Microbiol. 32, 1013–1021 (1999)

    CAS  PubMed  Google Scholar 

  33. Tovar, J. et al. Mitochondrial remnant organelles of Giardia function in iron–sulphur protein maturation. Nature 426, 172–176 (2003)

    ADS  CAS  PubMed  Google Scholar 

  34. Williams, B. A., Hirt, R. P., Lucocq, J. M. & Embley, T. M. A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418, 865–869 (2002)

    ADS  CAS  PubMed  Google Scholar 

  35. Regoes, A. et al. Protein import, replication and inheritance of a vestigial mitochondrion. J. Biol. Chem. 280, 30557–30563 (2005)

    CAS  PubMed  Google Scholar 

  36. Chan, K. W. et al. A Novel ADP/ATP transporter in the mitosome of the microaerophilic human parasite Entamoeba histolytica. Curr. Biol. 15, 737–742 (2005)

    CAS  PubMed  Google Scholar 

  37. Dolezal, P. et al. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc. Natl Acad. Sci. USA 102, 10924–10929 (2005)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lill, R. & Muhlenhoff, U. Iron–sulfur-protein biogenesis in eukaryotes. Trends Biochem. Sci. 30, 133–141 (2005)

    CAS  PubMed  Google Scholar 

  39. Ali, V., Shigeta, Y., Tokumoto, U., Takahashi, Y. & Nozaki, T. An intestinal parasitic protist, Entamoeba histolytica, possesses a non-redundant nitrogen fixation-like system for iron–sulfur cluster assembly under anaerobic conditions. J. Biol. Chem. 279, 16863–16874 (2004)

    CAS  PubMed  Google Scholar 

  40. Penny, D., McComish, B. J., Charleston, M. A. & Hendy, M. D. Mathematical elegance with biochemical realism: The covarion model of molecular evolution. J. Mol. Evol. 53, 711–723 (2001)

    ADS  CAS  PubMed  Google Scholar 

  41. Ho, S. Y. W. & Jermiin, L. S. Tracing the decay of the historical signal in biological sequence data. Syst. Biol. 53, 623–637 (2004)

    PubMed  Google Scholar 

  42. Felsenstein, J. Cases in which parsimony or incompatibility methods will be positively misleading. Syst. Zool. 25, 401–410 (1978)

    Google Scholar 

  43. Stiller, J. W. & Hall, B. D. Long-branch attraction and the rDNA model of early eukaryotic evolution. Mol. Biol. Evol. 16, 1270–1279 (1999)

    CAS  PubMed  Google Scholar 

  44. Philippe, H. et al. Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc. R. Soc. Lond. B 267, 1213–1221 (2000)

    CAS  Google Scholar 

  45. Hirt, R. P. et al. Microsporidia are related to fungi: Evidence from the largest subunit of RNA polymerase II and other proteins. Proc. Natl Acad. Sci. USA 96, 580–585 (1999)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Keeling, P. J., Luker, M. A. & Palmer, J. D. Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi. Mol. Biol. Evol. 17, 23–31 (2000)

    CAS  PubMed  Google Scholar 

  47. Arisue, N., Hasegawa, M. & Hashimoto, T. Root of the Eukaryota tree as inferred from combined maximum likelihood analyses of multiple molecular sequence data. Mol. Biol. Evol. 22, 409–420 (2005)

    CAS  PubMed  Google Scholar 

  48. Penny, D. Criteria for optimising phylogenetic trees and the problem of determining the root of a tree. J. Mol. Evol. 8, 95–116 (1976)

    ADS  CAS  PubMed  Google Scholar 

  49. Stechmann, A. & Cavalier-Smith, T. The root of the eukaryote tree pinpointed. Curr. Biol. 13, R665–R666 (2003)

    CAS  PubMed  Google Scholar 

  50. Steenkamp, E. T., Wright, J. & Baldauf, S. L. The protistan origins of animals and fungi. Mol. Biol. Evol. 23, 93–106 (2006); published online 8 September 2005 (doi:10.1093/molbev/msj011)

    CAS  PubMed  Google Scholar 

  51. Richards, T. A. & Cavalier-Smith, T. Myosin domain evolution and the primary divergence of eukaryotes. Nature 436, 1113–1118 (2005)

    ADS  CAS  PubMed  Google Scholar 

  52. Adl, S. M. et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52, 399–451 (2005)

    PubMed  Google Scholar 

  53. Graybeal, A. Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol. 47, 9–17 (1998)

    CAS  PubMed  Google Scholar 

  54. Philippe, H. & Adoutte, A. in Evolutionary Relationships Among Protozoa (eds Coombs, G. H., Vickerman, K., Sleigh, M. A. & Warren, A.) 25–56 (Kluwer Academic, Dordrecht, 1998)

    Google Scholar 

  55. Forterre, P. & Philippe, H. Where is the root of the universal tree of life? Bioessays 21, 871–879 (1999)

    CAS  PubMed  Google Scholar 

  56. Knoll, A. H. Life on a Young Planet: The First Three Billion Years of Evolution on Earth (Princeton Univ. Press, 2003)

    Google Scholar 

  57. Margulis, L., Dolan, M. F. & Whiteside, J. H. "Imperfections and oddities" in the origin of the nucleus. Paleobiology 31, 175–191 (2005)

    Google Scholar 

  58. Moreira, D. & Lopez Garcia, P. Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: The syntrophic hypothesis. J. Mol. Evol. 47, 517–530 (1998)

    ADS  CAS  PubMed  Google Scholar 

  59. Lake, J., Moore, J., Simonson, A. & Rivera, M. in Microbial Phylogeny and Evolution Concepts and Controversies (ed. Sapp, J.) 184–206 (Oxford Univ. Press, Oxford, 2005)

    Google Scholar 

  60. Cavalier-Smith, T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52, 297–354 (2002)

    CAS  PubMed  Google Scholar 

  61. Cavalier-Smith, T. Only six kingdoms of life. Proc. R. Soc. Lond. B 271, 1251–1262 (2004)

    CAS  Google Scholar 

  62. Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998)

    ADS  CAS  PubMed  Google Scholar 

  63. Vellai, T., Takacs, K. & Vida, G. A new aspect to the origin and evolution of eukaryotes. J. Mol. Evol. 46, 499–507 (1998)

    ADS  CAS  PubMed  Google Scholar 

  64. Searcy, D. G. in The Origin and Evolution of the Cell (eds Matsuno, H. H. & Matsuno, K.) 47–78 (World Scientific, Singapore, 1992)

    Google Scholar 

  65. von Dohlen, C. D., Kohler, S., Alsop, S. T. & McManus, W. R. Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412, 433–436 (2001)

    ADS  CAS  PubMed  Google Scholar 

  66. Zillig, W., Schnabel, R. & Stetter, K. O. Archaeabacteria and the origin of the eukaryotic cytoplasm. Curr. Top. Microbiol. Immunol. 114, 1–18 (1985)

    CAS  PubMed  Google Scholar 

  67. Rivera, M. C., Jain, R., Moore, J. E. & Lake, J. A. Genomic evidence for two functionally distinct gene classes. Proc. Natl Acad. Sci. USA 95, 6239–6244 (1998)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ribeiro, S. & Golding, G. B. The mosaic nature of the eukaryotic nucleus. Mol. Biol. Evol. 15, 779–788 (1998)

    CAS  PubMed  Google Scholar 

  69. Lake, J. A. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331, 184–186 (1988)

    ADS  CAS  PubMed  Google Scholar 

  70. Rivera, M. C. & Lake, J. A. Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257, 74–76 (1992)

    ADS  CAS  PubMed  Google Scholar 

  71. Baldauf, S. L., Palmer, J. D. & Doolittle, W. F. The root of the universal tree and the origin of eukaryotes based upon elongation factor phylogeny. Proc. Natl Acad. Sci. USA 93, 7749–7754 (1996)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brown, J. R. & Doolittle, W. F. Archaea and the prokaryote-to-eukaryote transition. Microbiol. Mol. Biol. Rev. 61, 456–502 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tourasse, N. J. & Gouy, M. Accounting for evolutionary rate variation among sequence sites consistently changes universal phylogenies deduced from rRNA and protein-coding genes. Mol. Phylogenet. Evol. 13, 159–168 (1999)

    CAS  PubMed  Google Scholar 

  74. Brown, J. R. et al. Universal trees based on large combined protein sequence data sets. Nature Genet. 28, 281–285 (2001)

    CAS  PubMed  Google Scholar 

  75. Daubin, V., Gouy, M. & Perriere, G. A phylogenomic approach to bacterial phylogeny: Evidence of a core of genes sharing a common history. Genome Res. 12, 1080–1090 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rivera, M. C. & Lake, J. A. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431, 152–155 (2004)

    ADS  CAS  PubMed  Google Scholar 

  77. Horiike, T., Hamada, K., Miyata, D. & Shinozawa, T. The origin of eukaryotes is suggested as the symbiosis of Pyrococcus into γ-proteobacteria by phylogenetic tree based on gene content. J. Mol. Evol. 59, 606–619 (2004)

    ADS  CAS  PubMed  Google Scholar 

  78. Margulis, L., Dolan, M. F. & Guerrero, R. The chimeric eukaryote: Origin of the nucleus from the karyomastigont in amitochondriate protists. Proc. Natl Acad. Sci. USA 97, 6954–6959 (2000)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gabaldon, T. & Huynen, M. A. Reconstruction of the proto-mitochondrial metabolism. Science 301, 609 (2003)

    CAS  PubMed  Google Scholar 

  80. Martin, W. et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl Acad. Sci. USA 99, 12246–12251 (2002)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Doolittle, W. F. You are what you eat: A gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet. 14, 307–311 (1998)

    CAS  PubMed  Google Scholar 

  82. Loftus, B. et al. The genome of the protist parasite Entamoeba histolytica. Nature 433, 865–868 (2005)

    ADS  CAS  PubMed  Google Scholar 

  83. Doolittle, W. F. Lateral genomics. Trends Cell Biol. 9, M5–M8 (1999)

    CAS  PubMed  Google Scholar 

  84. Kunin, V., Goldovsky, L., Darzentas, N. & Ouzounis, C. A. The net of life—reconstruction of the microbial phylogenetic network. Genome Res. 15, 954–959 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Javaux, E. J., Knoll, A. H. & Walter, M. R. Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412, 66–69 (2001)

    ADS  CAS  PubMed  Google Scholar 

  86. Butterfield, N. J. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386–404 (2000)

    Google Scholar 

  87. Benton, M. J. & Ayala, F. J. Dating the tree of life. Science 300, 1698–1700 (2003)

    ADS  CAS  PubMed  Google Scholar 

  88. Kurland, C. G. & Andersson, S. G. Origin and evolution of the mitochondrial proteome. Microbiol. Mol. Biol. Rev. 64, 786–820 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Shen, Y., Knoll, A. H. & Walter, M. R. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature 423, 632–635 (2003)

    ADS  CAS  PubMed  Google Scholar 

  90. Poulton, S. W., Fralick, P. W. & Canfield, D. E. The transition to a sulphidic ocean 1.84 billion years ago. Nature 431, 173–177 (2004)

    ADS  CAS  PubMed  Google Scholar 

  91. Rodriguez-Ezpeleta, N. et al. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr. Biol. 15, 1325–1330 (2005)

    CAS  PubMed  Google Scholar 

  92. Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997)

    CAS  PubMed  Google Scholar 

  93. Keithly, J. S., Langreth, S. G., Buttle, K. F. & Mannella, C. A. Electron tomographic and ultrastructural analysis of the Cryptosporidium parvum relict mitochondrion, its associated membranes, and organelles. J. Eukaryot. Microbiol. 52, 132–140 (2005)

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Müller, J. Archibald, R. Hirt, K. Henze and L. Tielens, and members of our laboratories, for discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Martin Embley or William Martin.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Embley, T., Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006). https://doi.org/10.1038/nature04546

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04546

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing