Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Iron meteorites as remnants of planetesimals formed in the terrestrial planet region

Abstract

Iron meteorites are core fragments from differentiated and subsequently disrupted planetesimals1. The parent bodies are usually assumed to have formed in the main asteroid belt, which is the source of most meteorites. Observational evidence, however, does not indicate that differentiated bodies or their fragments were ever common there. This view is also difficult to reconcile with the fact that the parent bodies of iron meteorites were as small as 20 km in diameter2,3 and that they formed 1–2 Myr earlier than the parent bodies of the ordinary chondrites4,5,6. Here we show that the iron-meteorite parent bodies most probably formed in the terrestrial planet region. Fast accretion times there allowed small planetesimals to melt early in Solar System history by the decay of short-lived radionuclides (such as 26Al, 60Fe)7,8,9. The protoplanets emerging from this population not only induced collisional evolution among the remaining planetesimals but also scattered some of the survivors into the main belt, where they stayed for billions of years before escaping via a combination of collisions, Yarkovsky thermal forces, and resonances10. We predict that some asteroids are main-belt interlopers (such as (4) Vesta). A select few may even be remnants of the long-lost precursor material that formed the Earth.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A snapshot of inner Solar System planetesimals and planetary embryos after 10 Myr of dynamical evolution.
Figure 2: The fraction of inner Solar System planetesimals scattered into the main-belt zone by gravitational interactions with planetary embryos.
Figure 3: The fraction of inner Solar System planetesimals that survive the first 10 Myr of collisional evolution.

References

  1. 1

    Burbine, T. H., McCoy, T. J., Meibom, A., Gladman, B. & Keil, K. in Asteroids III (eds Bottke, W. F. et al.) 653–667 (Univ. Arizona Press, Tucson, 2002)

    Google Scholar 

  2. 2

    Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. in Planetary Materials (ed. Papike, J. J.), Rev. Mineral. 36, 4-1–195 (1998).

  3. 3

    Chabot, N. L. & Haack, H. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y.) (Univ. Arizona Press, Tucson, in the press)

  4. 4

    Kleine, T., Mezger, K., Palme, H. & Scherer, E. Tungsten isotopes provide evidence that core formation in some asteroids predates the accretion of chondrite parent bodies. Lunar Planet. Sci. Conf. 36, 1431–1432 (2005)

    ADS  Google Scholar 

  5. 5

    Baker, J., Bizzarro, M., Wittig, N., Connelly, J. & Haack, H. Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites. Nature 436, 1127–1131 (2005)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Bizzarro, M., Baker, J. A., Haack, H. & Lundgaard, K. L. Rapid timescales for accretion and melting of differentiated planetesimals inferred from 26Al-26Mg chronometry. Astrophys. J. 632, L41–L44 (2005)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Russell, S. S. et al. Evidence for widespread 26Al in the solar nebula and constraints for nebula time scales. Science 273, 757–762 (1996)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Srinivasan, G., Goswami, J. N. & Bhandari, N. 26Al in eucrite Piplia Kalan: Plausible heat source and formation chronology. Science 284, 1348–1350 (1999)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Sanders, I. S. & Taylor, G. J. in Chondrites and the Protoplanetary Disk (eds Krot, A. N. et al.) 915–932 (ASP Conf. Series 341, Astron. Soc. Pacific, San Francisco, 2005)

    Google Scholar 

  10. 10

    Bottke, W. F., Vokrouhlický, D., Rubincam, D. P. & Brož, M. in Asteroids III (eds Bottke, W. F. et al.) 395–408 (Univ. Arizona Press, Tucson, 2002)

    Google Scholar 

  11. 11

    Levison, H. F. & Agnor, C. The role of giant planets in terrestrial planet formation. Astron. J. 125, 2692–2713 (2003)

    ADS  Article  Google Scholar 

  12. 12

    Bottke, W. F. et al. Debiased orbital and absolute magnitude distribution of the near-Earth objects. Icarus 156, 399–433 (2002)

    ADS  Article  Google Scholar 

  13. 13

    Gradie, J. & Tedesco, E. Compositional structure of the asteroid belt. Science 216, 1405–1407 (1982)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Petit, J., Morbidelli, A. & Chambers, J. The primordial excitation and clearing of the asteroid belt. Icarus 153, 338–347 (2001)

    ADS  Article  Google Scholar 

  15. 15

    Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Gladman, B. J. et al. Dynamical lifetimes of objects injected into asteroid belt resonances. Science 277, 197–201 (1997)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Grimm, R. E. & McSween, H. Y. Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science 259, 653–655 (1993)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Weidenschilling, S. J. The distribution of mass in the planetary system and solar nebula. Astrophys. Space Sci. 51, 153–158 (1977)

    ADS  Article  Google Scholar 

  19. 19

    Greenberg, R., Hartmann, W. K., Chapman, C. R. & Wacker, J. F. Planetesimals to planets—Numerical simulation of collisional evolution. Icarus 35, 1–26 (1978)

    ADS  Article  Google Scholar 

  20. 20

    Stevenson, D. J. & Lunine, J. I. Rapid formation of Jupiter by diffuse redistribution of water vapor in the solar nebula. Icarus 75, 146–155 (1988)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Scott, E. R. D. in Asteroids III (eds Bottke, W. F. et al.) 697–709 (Univ. Arizona Press, Tucson, 2002)

    Google Scholar 

  22. 22

    Bus, S. J. & Binzel, R. P. Phase II of the small main-belt asteroid spectroscopic survey: The observations. Icarus 158, 106–145 (2002)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Lazzaro, D. et al. Discovery of a basaltic asteroid in the outer main belt. Science 288, 2033–2035 (2000)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Sunshine, J. M. et al. High-calcium pyroxene as an indicator of igneous differentiation in asteroids and meteorites. Meteorit. Planet. Sci. 39, 1343–1357 (2004)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Cellino, A., Bus, S. J., Doressoundiram, A. & Lazzaro, D. in Asteroids III (eds Bottke, W. F. et al.) 632–643 (Univ. Arizona Press, Tucson, 2003)

    Google Scholar 

  26. 26

    Bottke, W. F. et al. The fossilized size distribution of the main asteroid belt. Icarus 175, 111–140 (2005)

    ADS  Article  Google Scholar 

  27. 27

    Bottke, W. F. et al. Linking the collisional evolution of the main belt to its dynamical excitation and depletion. Icarus 179, 63–94 (2005)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Bottke, W. F., Nolan, M. C., Greenberg, R. & Kolvoord, R. A. Velocity distributions among colliding asteroids. Icarus 107, 255–268 (1994)

    ADS  Article  Google Scholar 

  29. 29

    Bottke, W. F. et al. in Dynamics of Population of Planetary Systems (IAU Colloquium 197, Belegrade, 357–376) (eds Knezevic, Z. & Milani, A.) (Cambridge Univ. Press, Cambridge, 2005)

    Google Scholar 

  30. 30

    Eugster, O. Cosmic-ray exposure ages of meteorites and lunar rocks and their significance. Chemie Erde 63, 3–30 (2003)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank S. Bus, J. Chambers, D. Durda, M. Gounelle, H. Haack, H. Levison, T. McCoy, D. Mittlefehldt, E. Scott, J. Sunshine, D. Vokrouhlicky and M. Zolensky for discussions and comments. The project was supported by NASA's Origins of Solar System and Planetary Geology and Geophysics programmes.

Author information

Affiliations

Authors

Corresponding author

Correspondence to William F. Bottke.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Discussion

This file contains an extended discussion of several issues that could not be addressed in the main text. There are two Supplementary Figures. Supplementary Figure 1 shows the delivery efficiency of test bodies from various main belt resonances striking the Earth. Supplementary Figure 2 shows how a hypothetical population of olivine-rich A-type asteroids placed in the inner main asteroid belt undergo collisional and dynamical evolution. (PDF 919 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bottke, W., Nesvorný, D., Grimm, R. et al. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature 439, 821–824 (2006). https://doi.org/10.1038/nature04536

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing