Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plate-boundary deformation associated with the great Sumatra–Andaman earthquake

Abstract

The Sumatra–Andaman earthquake of 26 December 2004 is the first giant earthquake (moment magnitude Mw > 9.0) to have occurred since the advent of modern space-based geodesy and broadband seismology. It therefore provides an unprecedented opportunity to investigate the characteristics of one of these enormous and rare events. Here we report estimates of the ground displacement associated with this event, using near-field Global Positioning System (GPS) surveys in northwestern Sumatra combined with in situ and remote observations of the vertical motion of coral reefs. These data show that the earthquake was generated by rupture of the Sunda subduction megathrust over a distance of >1,500 kilometres and a width of <150 kilometres. Megathrust slip exceeded 20 metres offshore northern Sumatra, mostly at depths shallower than 30 kilometres. Comparison of the geodetically and seismically inferred slip distribution indicates that 30 per cent additional fault slip accrued in the 1.5 months following the 500-second-long seismic rupture. Both seismic and aseismic slip before our re-occupation of GPS sites occurred on the shallow portion of the megathrust, where the large Aceh tsunami originated. Slip tapers off abruptly along strike beneath Simeulue Island at the southeastern edge of the rupture, where the earthquake nucleated and where an Mw = 7.2 earthquake occurred in late 2002. This edge also abuts the northern limit of slip in the 28 March 2005 Mw = 8.7 Nias–Simeulue earthquake.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Tectonic setting and ruptures of major interplate earthquakes along the Sunda megathrust.
Figure 2: Comparison of near-field geodetic measurements (black arrows) with predictions (green arrows) of the seismic model III of ref.14.
Figure 3: Fault slip distribution determined from the geodetic data.
Figure 4: Latitudinal variations of scalar moments as determined from seismic waveforms (model III of ref.14) and from geodetic data.

References

  1. 1

    Bock, Y. et al. Crustal motion in Indonesia from Global Positioning System measurements. J. Geophys. Res. 108(B8), 2367, doi:10.1029/2001JB000324 (2003)

    ADS  Article  Google Scholar 

  2. 2

    Michel, G. et al. Crustal motion and block behaviour in SE-Asia from GPS measurements. Earth Phys. Sci. Lett. 187, 239–244 (2001)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Sieh, K. & Natawidjaja, D. Neotectonics of the Sumatran fault, Indonesia. J. Geophys. Res. 105, 28295–28326 (2000)

    ADS  Article  Google Scholar 

  4. 4

    Genrich, J. F. et al. Distribution of slip at the northern Sumatran fault system. J. Geophys. Res. 105, 722–743 (2000)

    Article  Google Scholar 

  5. 5

    Paul, J. et al. The motion and active deformation of India. Geophys. Res. Lett. 28, 647–650 (2001)

    ADS  Article  Google Scholar 

  6. 6

    Bilham, R., Engdahl, R., Feldl, N. & Satyabala, S. P. Partial and complete rupture of the Indo-Andaman plate boundary 1847–2004. Seismol. Res. Lett. 76, 299–311 (2005)

    Article  Google Scholar 

  7. 7

    Newcomb, K. R. & McCann, W. R. Seismic history and seismotectonics of the Sunda Arc. J. Geophys. Res. 92, 421–439 (1987)

    ADS  Article  Google Scholar 

  8. 8

    Zachariasen, J., Sieh, K., Taylor, F. W. R., Edwards, R. L. & Hantoro, W. S. Submergence and uplift associated with the giant 1833 Sumatran subduction earthquake: Evidence from coral microatolls. J. Geophys. Res. 104(B1), 895–920 (1999)

    ADS  Article  Google Scholar 

  9. 9

    Sieh, K., Natawidjaja, D., Chlieh, M., Galetzka, J. & Avouac, J. P. The giant subduction earthquakes of 1797 and 1833, West Sumatra: Characteristic couplets, uncharacteristic slip. Eos 85 (Fall Meeting Suppl.), abstr. T12B–04 (2004)

  10. 10

    Ni, S., Kanamori, H. & Helmberger, D. Energy radiation from the Sumatra earthquake. Nature 434, 582 (2005)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Guilbert, J., Roueff, A., Vergoz, J. & Cansi, Y. An original image of the seismic rupture of the Sumatra Mw = 9.0 using PMCC from seismic and hydroacoustic small array. Geophys. Res. Lett. 32, L15310, doi:10.1029/2005GL022966 (2005)

    ADS  Article  Google Scholar 

  12. 12

    de Groot-Hedlin, C. D. Estimation of the rupture length and velocity of the Great Sumatra earthquake of Dec 26, 2004 using hydroacoustic signals. Geophys. Res. Lett. 32, L11303, doi:10.1029/2005GLO22695 (2005)

    ADS  Article  Google Scholar 

  13. 13

    Lay, T. et al. The great Sumatra–Andaman earthquake of 26 December 2004. Science 308, 1127–1133 (2005)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Ammon, C. J. et al. Rupture process of the 2004 Sumatra–Andaman earthquake. Science 308, 1133–1139 (2005)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Prawirodirdjo, L. et al. Geodetic observations of interseismic strain segmentation at the Sumatra subduction zone. Geophys. Res. Lett. 24, 2601–2604 (1997)

    ADS  Article  Google Scholar 

  16. 16

    McCaffrey, R. et al. Strain partitioning during oblique plate convergence in northern Sumatra: Geodetic and seismologic constraints and numerical modeling. J. Geophys. Res. 105, 28363–28376 (2000)

    ADS  Article  Google Scholar 

  17. 17

    Vigny, C. et al. Insight into the 2004 Sumatra–Andaman earthquake from GPS measurements in southeast Asia. Nature 436, 201–206 (2005)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Nikolaidis, R. Observation of geodetic and seismic deformation with the Global Positioning System. PhD thesis, Univ. California, San Diego (2002)

  19. 19

    Altamimi, Z., Sillard, P. & Boucher, C. ITRF2000: A new release of the International Terrestrial Reference frame for earth science applications. J. Geophys. Res. 107 (B10), 2214, doi:10.1029/2001JB000561 (2002)

    ADS  Article  Google Scholar 

  20. 20

    Natawidjaja, D. H. et al. Paleogeodetic records of seismic and aseismic subduction from central Sumatran microatolls, Indonesia. J. Geophys. Res. 109, doi:10.1029/2003JB0002398 (2004)

  21. 21

    Zachariasen, J., Sieh, K., Taylor, F. W. & Hantoro, W. S. Modern vertical deformation above the Sumatran subduction zone: Paleogeodetic insights from coral microatolls. Bull. Seismol. Soc. Am. 90, 897–913 (2000)

    Article  Google Scholar 

  22. 22

    Agnew, D. C. NLOADF: a program for computing ocean-tide loading. J. Geophys. Res. 102, 5109–5110 (1997)

    ADS  Article  Google Scholar 

  23. 23

    Meltzner, A. J. et al. Uplift and subsidence associated with the great Aceh-Andaman earthquake of 2004. J. Geophys. Res. 111, doi:10.1029/2005JB003891 (2006)

  24. 24

    Jade, J., Ananda, M. B., Dileep Kumar, P. & Banerjee, S. Co-seismic and post-seismic displacements in Andaman and Nicobar Islands from GPS measurements. Curr. Sci. 88, 1980–1984 (2005)

    Google Scholar 

  25. 25

    Ruff, L. & Kanamori, H. Seismicity and the subduction process. Phys. Earth Planet. Inter. 23, 240–252 (1980)

    ADS  Article  Google Scholar 

  26. 26

    Kanamori, H. in Earthquakes: Observation, Theory and Interpretation (eds Kanamori, H. & Bosch, E.) 597 (North Holland, New York, 1983)

    Google Scholar 

  27. 27

    Uyeda, S. & Kanamori, H. Back-arc opening and the model of subduction. J. Geophys. Res. 84, 1049–1061 (1979)

    ADS  Article  Google Scholar 

  28. 28

    Scholz, C. H. & Campos, J. On the mechanism of seismic decoupling and back-arc spreading at subduction zones. J. Geophys. Res. 100, 22103–22115 (1995)

    ADS  Article  Google Scholar 

  29. 29

    McCaffrey, R. Influences of recurrence times and fault zone temperatures on the age-rate dependence of subduction zone seismicity. J. Geophys. Res. 102, 22839–22854 (1997)

    ADS  Article  Google Scholar 

  30. 30

    Natawidjaja, D. H. et al. The giant Sumatran megathrust ruptures of 1797 and 1833: Paleoseismic evidence from coral microatolls. J. Geophys. Res. (in the press)

  31. 31

    Chlieh, M., Avouac, J., Sieh, K., Natawidjaja, D. & Galetzka, J. Investigating lateral variations of interseismic strain along the Sumatran subduction zone. Eos 85 (Fall Meeting Suppl.), abstr. T13C–1385 (2004)

  32. 32

    McCaffrey, R. Crustal block rotations and plate coupling. In Plate Boundary Zones (eds Stein, S. & Freymueller, J.) 101–122, doi:10.1029/030GD06 (AGU Geodynamics Series 30, Washington DC, 2002)

    Google Scholar 

  33. 33

    Simoes, M., Avouac, J.-P., Cattin, R. & Henry, P. The Sumatra subduction zone: a case for a locked fault zone extending into the mantle. J. Geophys. Res. 109, doi:10.1029/2003JB002958 (2004)

  34. 34

    Bollinger, L., Avouac, J. P., Cattin, R. & Pandey, M. R. Stress buildup in the Himalaya. J. Geophys. Res. 109, doi:10.129/2003JB002911 (2004)

  35. 35

    Miyazaki, S., Segall, P., Fukuda, J. & Kato, T. Space time distribution of afterslip following the 2003 Tokachi-oki earthquake: Implications for variations in fault zone frictional properties. Geophys. Res. Lett. 31, doi:10.1029/2003GL019410 (2004)

  36. 36

    Cohen, S. C. On the rapid postseismic uplift along Turnagain Arm, Alaska following the 1964 Prince William Sound Earthquake. Geophys. Res. Lett. 25, 1213–1215 (1998)

    ADS  Article  Google Scholar 

  37. 37

    Hutton, W., DeMets, C., Sanchez, O., Suarez, G. & Stock, J. Slip kinematics and dynamics during and after the 1995 October 9 M-w = 8.0 Colima-Jalisco earthquake, Mexico, from GPS geodetic constraints. Geophys. J. Int. 146, 637–658 (2001)

    ADS  Article  Google Scholar 

  38. 38

    Hsu, Y. J. et al. Rapid afterslip following the 1999 Chi-Chi, Taiwan earthquake. Geophys. Res. Lett. 29, doi:10.1029/2002GL014967 (2002)

  39. 39

    Scholz, C. The Mechanics of Earthquakes and Faulting Ch. 2 (Cambridge Univ. Press, New York, 1990)

    Google Scholar 

  40. 40

    Hyndman, R. D., Yamano, M. & Oleskevich, D. A. The seismogenic zone of subduction thrust faults. The Island Arc 6, 244–260 (1997)

    Article  Google Scholar 

  41. 41

    Pacheco, J. F., Sykes, L. R. & Scholz, C. H. Nature of seismic coupling along simple plate boundaries of the subduction type. J. Geophys. Res. 98, 14133–14160 (1993)

    ADS  Article  Google Scholar 

  42. 42

    Brune, J. N. Seismic moment, seismicity, and rate of slip along major fault zones. J. Geophys. Res. 73, 777–784 (1968)

    ADS  Article  Google Scholar 

  43. 43

    Curray, J. Tectonics and history of the Andaman Sea region. J. Asian Earth Sci. 25, 187–232 (2005)

    ADS  Article  Google Scholar 

  44. 44

    Engdhal, E., van der Hilst, R. & Buland, R. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Amer. 88, 722–743 (1998)

    Google Scholar 

  45. 45

    Tsai, V. C., Nettles, M., Ekstrom, G. & Dziewonski, A. M. Multiple CMT source analysis of the 2004 Sumatra earthquake. Geophys. Res. Lett. 32, L17304, doi:10.1029/2005GL023813 (2005)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank the team from BAKOSURTANAL who collected the GPS field data in Sumatra under difficult conditions (J. Efendi, A. Indrajit, M. Nyamadi, C. Bagandi, D. Sudharmono, A. Suryono, M. Achmad, U. Santoso, C. Yuniarsa, Endang, A. Pujobuntoro, H. Dradjat, B. Susilo and B. Parjanto). We are grateful to C. Vigny for comments and suggestions. This work has benefited from discussions with C. Ji. The Gordon and Betty Moore Foundation, the US National Science Foundation, the Southern California Earthquake Center, and BAKOSURTANAL supported this research. We thank R. W. Matindas and J. McRaney for their support. This is Caltech Tectonics Observatory contribution number 31.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Avouac.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Slip model derived from the inversion of body waves and surface waves with predicted horizontal and vertical displacements. (PDF 684 kb)

Supplementary Figure 2

Observed and predicted displacements from slip model obtained from the inversion of horizontal and vertical measurements. (PDF 901 kb)

Supplementary Figure 3

Latitudinal variations of scalar moments as determined from seismic model and from the slip models A, A2 and A3 listed in Table 2. (PDF 205 kb)

Supplementary Figure 4

Checker board resolution test. (PDF 1856 kb)

Supplementary Data

This file contains Supplementary Tables 1–8 and additional references. (DOC 70 kb)

Supplementary Methods

This section contains additional explanations of the data handling and the modelling. (DOC 113 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Subarya, C., Chlieh, M., Prawirodirdjo, L. et al. Plate-boundary deformation associated with the great Sumatra–Andaman earthquake. Nature 440, 46–51 (2006). https://doi.org/10.1038/nature04522

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links