Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RNA-mediated response to heat shock in mammalian cells

Abstract

The heat-shock transcription factor 1 (HSF1) has an important role in the heat-shock response in vertebrates by inducing the expression of heat-shock proteins (HSPs) and other cytoprotective proteins1. HSF1 is present in unstressed cells in an inactive monomeric form and becomes activated by heat and other stress stimuli. HSF1 activation involves trimerization and acquisition of a site-specific DNA-binding activity2,3, which is negatively regulated by interaction with certain HSPs4,5,6. Here we show that HSF1 activation by heat shock is an active process that is mediated by a ribonucleoprotein complex containing translation elongation factor eEF1A and a previously unknown non-coding RNA that we term HSR1 (heat shock RNA-1). HSR1 is constitutively expressed in human and rodent cells and its homologues are functionally interchangeable. Both HSR1 and eEF1A are required for HSF1 activation in vitro; antisense oligonucleotides or short interfering (si)RNA against HSR1 impair the heat-shock response in vivo, rendering cells thermosensitive. The central role of HSR1 during heat shock implies that targeting this RNA could serve as a new therapeutic model for cancer, inflammation and other conditions associated with HSF1 deregulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of an HSF1-activating fraction containing eEF1A.
Figure 2: HSR1-mediated activation of HSF1.
Figure 3: Inhibition of the heat-shock response in vivo by targeting HSR1.

Similar content being viewed by others

References

  1. Sarge, K. D., Zimarino, V., Holm, K., Wu, C. & Morimoto, R. I. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev. 5, 1902–1911 (1991)

    Article  CAS  Google Scholar 

  2. Sarge, K. D., Murphy, S. P. & Morimoto, R. I. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 13, 1392–1407 (1993)

    Article  CAS  PubMed Central  Google Scholar 

  3. Westwood, J. T. & Wu, C. Activation of Drosophila heat shock factor: conformational change associated with a monomer-to-trimer transition. Mol. Cell. Biol. 13, 3481–3486 (1993)

    Article  CAS  PubMed Central  Google Scholar 

  4. Zou, J., Guo, Y., Guettouche, T., Smith, D. F. & Voellmy, R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94, 471–480 (1998)

    Article  CAS  Google Scholar 

  5. Voellmy, R. Transcriptional regulation of the metazoan stress protein response. Prog. Nucleic Acid Res. Mol. Biol. 78, 143–185 (2004)

    Article  CAS  Google Scholar 

  6. Shi, Y., Mosser, D. D. & Morimoto, R. I. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 12, 654–666 (1998)

    Article  CAS  PubMed Central  Google Scholar 

  7. Abravaya, K., Myers, M. P., Murphy, S. P. & Morimoto, R. I. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev. 6, 1153–1164 (1992)

    Article  CAS  Google Scholar 

  8. Marchler, G. & Wu, C. Modulation of Drosophila heat shock transcription factor activity by the molecular chaperone DROJ1. EMBO J. 20, 499–509 (2001)

    Article  CAS  PubMed Central  Google Scholar 

  9. Zimarino, V., Tsai, C. & Wu, C. Complex modes of heat shock factor activation. Mol. Cell. Biol. 10, 752–759 (1990)

    Article  CAS  PubMed Central  Google Scholar 

  10. Shopland, L. S., Hirayoshi, K., Fernandes, M. & Lis, J. T. HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites. Genes Dev. 9, 2756–2769 (1995)

    Article  CAS  Google Scholar 

  11. Shopland, L. S. & Lis, J. T. HSF recruitment and loss at most Drosophila heat shock loci is coordinated and depends on proximal promoter sequences. Chromosoma 105, 158–171 (1996)

    Article  CAS  Google Scholar 

  12. Zuo, J., Rungger, D. & Voellmy, R. Multiple layers of regulation of human heat shock transcription factor 1. Mol. Cell. Biol. 15, 4319–4330 (1995)

    Article  CAS  PubMed Central  Google Scholar 

  13. Ali, A., Bharadwaj, S., O'Carroll, R. & Ovsenek, N. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol. Cell. Biol. 18, 4949–4960 (1998)

    Article  CAS  PubMed Central  Google Scholar 

  14. Bharadwaj, S., Ali, A. & Ovsenek, N. Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 In vivo. Mol. Cell. Biol. 19, 8033–8041 (1999)

    Article  CAS  PubMed Central  Google Scholar 

  15. Clos, J., Rabindran, S., Wisniewski, J. & Wu, C. Induction temperature of human heat shock factor is reprogrammed in a Drosophila cell environment. Nature 364, 252–255 (1993)

    Article  ADS  CAS  Google Scholar 

  16. Batulan, Z. et al. High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J. Neurosci. 23, 5789–5798 (2003)

    Article  CAS  Google Scholar 

  17. Gothard, L. Q., Ruffner, M. E., Woodward, J. G., Park-Sarge, O. K. & Sarge, K. D. Lowered temperature set point for activation of the cellular stress response in T-lymphocytes. J. Biol. Chem. 278, 9322–9326 (2003)

    Article  CAS  Google Scholar 

  18. Jolly, C., Usson, Y. & Morimoto, R. I. Rapid and reversible relocalization of heat shock factor 1 within seconds to nuclear stress granules. Proc. Natl, Acad. Sci. USA 96, 6769–6774 (1999)

    Article  ADS  CAS  Google Scholar 

  19. Panniers, R. Translational control during heat shock. Biochimie 76, 737–747 (1994)

    Article  CAS  Google Scholar 

  20. Welch, W. J. & Suhan, J. P. Morphological study of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment. J. Cell Biol. 101, 1198–1211 (1985)

    Article  CAS  Google Scholar 

  21. Kristensen, P., Lund, A., Clark, B. F., Cavallius, J. & Merrick, W. C. Purification and characterisation of a tissue specific elongation factor 1 alpha (EF-1 α2) from rabbit muscle. Biochem. Biophys. Res. Commun. 245, 810–814 (1998)

    Article  CAS  Google Scholar 

  22. Baler, R., Zou, J. & Voellmy, R. Evidence for a role of Hsp70 in the regulation of the heat shock response in mammalian cells. Cell Stress Chaperones 1, 33–39 (1996)

    Article  CAS  PubMed Central  Google Scholar 

  23. Farkas, T., Kutskova, Y. A. & Zimarino, V. Intramolecular repression of mouse heat shock factor 1. Mol. Cell. Biol. 18, 906–918 (1998)

    Article  CAS  PubMed Central  Google Scholar 

  24. Zhong, M., Orosz, A. & Wu, C. Direct sensing of heat and oxidation by Drosophila heat shock transcription factor. Mol. Cell 2, 101–108 (1998)

    Article  CAS  Google Scholar 

  25. Zhong, M., Kim, S. J. & Wu, C. Sensitivity of Drosophila heat shock transcription factor to low pH. J. Biol. Chem. 274, 3135–3140 (1999)

    Article  CAS  Google Scholar 

  26. Clos, J. et al. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63, 1085–1097 (1990)

    Article  CAS  Google Scholar 

  27. Szymanski, M. & Barciszewski, J. Regulation by RNA. Int. Rev. Cytol. 231, 197–258 (2003)

    Article  CAS  Google Scholar 

  28. Nudler, E. & Mironov, A. S. The riboswitch control of bacterial metabolism. Trends Biochem. Sci. 29, 11–17 (2004)

    Article  CAS  Google Scholar 

  29. Storz, G. An RNA thermometer. Genes Dev. 13, 633–636 (1999)

    Article  CAS  Google Scholar 

  30. Westerheide, S. D. & Morimoto, R. I. Heat shock response modulators as therapeutic tools for diseases of protein conformation. J. Biol. Chem. 280, 33097–33100 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Schick and E. Avetissova for technical assistance and N. J. Cowan for critical reading of the manuscript. This work was supported by grants from the NIH and the Edward Mallinckrodt Jr Foundation (E.N.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Gershon or Evgeny Nudler.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains the Supplementary Figures, Supplementary Methods, Supplementary Notes and additional references. (PDF 563 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamovsky, I., Ivannikov, M., Kandel, E. et al. RNA-mediated response to heat shock in mammalian cells. Nature 440, 556–560 (2006). https://doi.org/10.1038/nature04518

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04518

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing