Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse

Abstract

What limits the rate at which sensory information can be transmitted across synaptic connections in the brain? High-frequency signalling is restricted to brief bursts at many central excitatory synapses1,2, whereas graded ribbon-type synapses can sustain release3 and transmit information4 at high rates. Here we investigate transmission at the cerebellar mossy fibre terminal, which can fire at over 200 Hz for sustained periods in vivo5, yet makes few synaptic contacts onto individual granule cells6. We show that connections between mossy fibres and granule cells can sustain high-frequency signalling at physiological temperature. We use fluctuation analysis7 and pharmacological block of desensitization to identify the quantal determinants of short-term plasticity and combine these with a short-term plasticity model and cumulative excitatory postsynaptic current analysis to quantify the determinants of sustained high-frequency transmission. We show that release is maintained at each release site by rapid reloading of release-ready vesicles from an unusually large releasable pool of vesicles8 (300 per site). Our results establish that sustained vesicular release at high rates is not restricted to graded ribbon-type synapses and that mossy fibres are well suited for transmitting broad-bandwidth rate-coded information to the input layer of the cerebellar cortex.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frequency dependence of transmission at the MF–GC synapse.
Figure 2: Quantal determinants of short-term plasticity at MF–GC connections.
Figure 3: Recovery from depression and facilitation at MF–GC synapses.
Figure 4: Time course of vesicle reloading and releasable pool size.

References

  1. Silver, R. A., Lubke, J., Sakmann, B. & Feldmeyer, D. High-probability uniquantal transmission at excitatory synapses in barrel cortex. Science 302, 1981–1984 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Tsodyks, M. V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl Acad. Sci. USA 94, 719–723 (1997)

    Article  ADS  CAS  Google Scholar 

  3. Griesinger, C. B., Richards, C. D. & Ashmore, J. F. Fast vesicle replenishment allows indefatigable signalling at the first auditory synapse. Nature 435, 212–215 (2005)

    Article  ADS  CAS  Google Scholar 

  4. de Ruyter van Steveninck, R. R. & Laughlin, S. B. The rate of information transfer at graded-potential synapses. Nature 379, 642–664 (1996)

    Article  ADS  CAS  Google Scholar 

  5. van Kan, P. L., Gibson, A. R. & Houk, J. C. Movement-related inputs to intermediate cerebellum of the monkey. J. Neurophysiol. 69, 74–94 (1993)

    Article  CAS  Google Scholar 

  6. Jakab, R. L. & Hamori, J. Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anat. Embryol. 179, 81–88 (1988)

    Article  CAS  Google Scholar 

  7. Silver, R. A. Estimation of nonuniform quantal parameters with multiple-probability fluctuation analysis: theory, application and limitations. J. Neurosci. Methods 130, 127–141 (2003)

    Article  Google Scholar 

  8. Rizzoli, S. O. & Betz, W. J. Synaptic vesicle pools. Nature Rev. Neurosci. 6, 57–69 (2005)

    Article  CAS  Google Scholar 

  9. Silver, R. A., Cull-Candy, S. G. & Takahashi, T. Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J. Physiol. (Lond.) 494, 231–250 (1996)

    Article  CAS  Google Scholar 

  10. Chadderton, P., Margrie, T. W. & Hausser, M. Integration of quanta in cerebellar granule cells during sensory processing. Nature 428, 856–860 (2004)

    Article  ADS  CAS  Google Scholar 

  11. DiGregorio, D. A., Nusser, Z. & Silver, R. A. Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron 35, 521–533 (2002)

    Article  CAS  Google Scholar 

  12. Mercer, A. et al. Excitatory connections made by presynaptic cortico-cortical pyramidal cells in layer 6 of the neocortex. Cereb. Cortex 15, 1485–1496 (2005)

    Article  Google Scholar 

  13. Hempel, C. M., Hartman, K. H., Wang, X. J., Turrigiano, G. G. & Nelson, S. B. Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex. J. Neurophysiol. 83, 3031–3041 (2000)

    Article  CAS  Google Scholar 

  14. Iwasaki, S. & Takahashi, T. Developmental regulation of transmitter release at the calyx of Held in rat auditory brainstem. J. Physiol. (Lond.) 534, 861–871 (2001)

    Article  CAS  Google Scholar 

  15. Taschenberger, H., Leao, R. M., Rowland, K. C., Spirou, G. A. & von Gersdorff, H. Optimizing synaptic architecture and efficiency for high-frequency transmission. Neuron 36, 1127–1143 (2002)

    Article  CAS  Google Scholar 

  16. von Gersdorff, H. & Borst, J. G. Short-term plasticity at the calyx of held. Nature Rev. Neurosci. 3, 53–64 (2002)

    Article  CAS  Google Scholar 

  17. Sargent, P. B., Saviane, C., Nielsen, T. A., DiGregorio, D. A. & Silver, R. A. Rapid vesicular release, quantal variability and spillover contribute to the precision and reliability of transmission at a glomerular synapse. J. Neurosci. 25, 8173–8187 (2005)

    Article  CAS  Google Scholar 

  18. Sola, E., Prestori, F., Rossi, P., Taglietti, V. & D'Angelo, E. Increased neurotransmitter release during long-term potentiation at mossy fibre–granule cell synapses in rat cerebellum. J. Physiol. (Lond.) 557, 843–861 (2004)

    Article  CAS  Google Scholar 

  19. Scheuss, V., Schneggenburger, R. & Neher, E. Separation of presynaptic and postsynaptic contributions to depression by covariance analysis of successive EPSCs at the calyx of held synapse. J. Neurosci. 22, 728–739 (2002)

    Article  CAS  Google Scholar 

  20. Betz, W. J. Depression of transmitter release at the neuromuscular junction of the frog. J. Physiol. (Lond.) 206, 629–644 (1970)

    Article  CAS  Google Scholar 

  21. Markram, H., Wang, Y. & Tsodyks, M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl Acad. Sci. USA 95, 5323–5328 (1998)

    Article  ADS  CAS  Google Scholar 

  22. Xu-Friedman, M. A. & Regehr, W. G. Ultrastructural contributions to desensitization at cerebellar mossy fiber to granule cell synapses. J. Neurosci. 23, 2182–2192 (2003)

    Article  CAS  Google Scholar 

  23. Schneggenburger, R., Meyer, A. C. & Neher, E. Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse. Neuron 23, 399–409 (1999)

    Article  CAS  Google Scholar 

  24. Palay, S. L. & Chan-Palay, V. Cerebellar Cortex: Cortex and Organization (Springer, New York, 1974)

    Book  Google Scholar 

  25. Hallermann, S., Pawlu, C., Jonas, P. & Heckmann, M. A large pool of releasable vesicles in a cortical glutamatergic synapse. Proc. Natl Acad. Sci. USA 100, 8975–8980 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Royle, S. J. & Lagnado, L. Endocytosis at the synaptic terminal. J. Physiol. (Lond.) 553, 345–355 (2003)

    Article  CAS  Google Scholar 

  27. Hamori, J. & Somogyi, J. Differentiation of cerebellar mossy fiber synapses in the rat: a quantitative electron microscope study. J. Comp. Neurol. 220, 365–377 (1983)

    Article  CAS  Google Scholar 

  28. Xu-Friedman, M. A. & Regehr, W. G. Structural contributions to short-term synaptic plasticity. Physiol. Rev. 84, 69–85 (2004)

    Article  CAS  Google Scholar 

  29. Zenisek, D., Steyer, J. A. & Almers, W. Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature 406, 849–854 (2000)

    Article  ADS  CAS  Google Scholar 

  30. Sakaba, T. & Neher, E. Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron 32, 1119–1131 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. DiGregorio and I. Kleppe for discussions; and D. Attwell, D. DiGregorio, I. Kleppe, T. Nielsen, A. Roth and V. Steuber for comments on the manuscript. This work was supported by The Wellcome Trust and the European Community. R.A.S. is in receipt of a Wellcome Trust Senior Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Angus Silver.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains the Supplementary Methods (Determining quantal parameters with MPFA and CV analysis; short-term plasticity model for extracting the time course of recovery from presynaptic depression; and serial and parallel models of vesicle reloading at the MF) and Supplementary Figure 1 (Short-term plasticity during pharmacological block of AMPAR desensitisation.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saviane, C., Silver, R. Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature 439, 983–987 (2006). https://doi.org/10.1038/nature04509

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04509

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing