Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet

Abstract

The elevation history of the Tibetan plateau provides direct insight into the tectonic processes associated with continent–continent collisions. Here we present oxygen-isotope-based estimates of the palaeo-altimetry of late Eocene and younger deposits of the Lunpola basin in the centre of the plateau, which indicate that the surface of Tibet has been at an elevation of more than 4 kilometres for at least the past 35 million years. We conclude that crustal, but not mantle, thickening models, combined with plate-kinematic solutions of India–Asia convergence, are compatible with palaeo-elevation estimates across the Tibetan plateau.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generalized tectonic map of the Himalaya–Tibet region, and details of the Lunpola basin.
Figure 2: Sample elevations versus predicted elevations of modern stream waters in central Tibet.
Figure 3: Δ(δ 18 O w ) versus predicted elevations derived from Lunpola carbonates.
Figure 4: Predicted elevation history of the Tibetan plateau north of the Indus-Yarlung Tsangpo suture (IYZS) at the longitude of 90° E, and the India–Asia convergence.

Similar content being viewed by others

References

  1. Argand, E. La tectonique de l'Asie. In Proc. 13th Int. Geological Congress Vol. 1, Part 5, 171–372 (Vaillant-Carmanne, Liège, 1924)

    Google Scholar 

  2. Dewey, J. F. & Burke, K. C. A. Tibetan, Variscan, and Precambrian basement reactivation: products of continental collision. J. Geol. 81, 683–692 (1973)

    Article  ADS  Google Scholar 

  3. Beaumont, C., Jamieson, R. A., Nguyen, M. H. & Medvedev, S. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan–Tibetan orogen. J. Geophys. Res. 109, B06406, doi:10:1029/2003JB002809 (2004)

    Article  ADS  Google Scholar 

  4. England, P. & Housemann, G. Finite strain calculations of continental deformation. II: Application to the India–Asia plate collision. J. Geophys. Res. 91, 3664–3676 (1986)

    Article  ADS  Google Scholar 

  5. Houseman, G. & England, P. in The Tectonic Evolution of Asia (eds Yin, A. & Harrison, T. M.) 3–17 (Cambridge Univ. Press, Cambridge, 1996)

    Google Scholar 

  6. Molnar, P., England, P. & Martinod, J. Mantle dynamics, uplift of the Tibetan plateau, and the Indian Monsoon. Rev. Geophys. 31, 357–396 (1993)

    Article  ADS  Google Scholar 

  7. Tapponnier, P., Peltzer, G., LeDain, A. Y., Armijo, R. & Cobbold, P. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology 10, 611–616 (1982)

    Article  ADS  Google Scholar 

  8. Tapponnier, P. et al. Oblique stepwise rise and growth of the Tibet plateau. Science 294, 1671–1677 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Royden, L. H. et al. Surface deformation and lower crustal flow in eastern Tibet. Science 276, 788–790 (1997)

    Article  CAS  Google Scholar 

  10. Bureau of Geology and Mineral Resources Xizang Autonomous Region. Regional Geology of Xizang (Tibet) Autonomous Region (Geological Publishing House, Beijing, 1993)

    Google Scholar 

  11. Zhai, G. et al. (eds) Oil and gas fields in Qinghai and Xizang. In Petroleum Geology of China Vol. 14 (Petroleum Industry Press, Beijing, 1990)

  12. Xia, J. B. Cenozoic of Baingoin and its borders, Xizang (Tibet) [Chinese with English summary]. Contrib. Geol. Qinghai-Xizang (Tibet) Plateau 3, 243–254 (1983)

    Google Scholar 

  13. Xu, Z. Y. The Tertiary and its petroleum potential in the Lunpola Basin, Tibet. Oil Gas Geol. 1, 153–158 (1980)

    Google Scholar 

  14. Xu, Z. Y., Zhao, J. P. & Wu, Z. L. On the Tertiary continental basins and their petroleum potential in Qinghai-Xizang (Tibet) Plateau with Lunpola Basin as example [Chinese with English summary]. Contrib. Geol. Qinghai-Xizang (Tibet) Plateau 17, 391–399 (1985)

    Google Scholar 

  15. Rowley, D. B., Pierrehumbert, R. T. & Currie, B. S. A new approach to stable isotope-based paleoaltimetry: Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene. Earth Planet. Sci. Lett. 188, 253–268 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Garzione, C. N., Dettman, D. L., Quade, J., DeCelles, P. G. & Butler, R. F. High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal. Geology 28, 339–342 (2000)

    Article  ADS  Google Scholar 

  17. Garzione, C. N., Quade, J., DeCelles, P. G. & English, N. B. Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth Planet. Sci. Lett. 183, 215–229 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Currie, B. S., Rowley, D. B. & Tabor, N. J. Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology 33, 181–184 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964)

    Article  ADS  Google Scholar 

  20. Rozanski, K., Araguas-Araguas, L. & Gonfianti, R. in Climate Change in Continental Isotopic Records 1–36 (American Geophysical Union, Washington, 1993)

    Google Scholar 

  21. Tian, L., Masson-Delmotte, V., Stievenard, M., Yao, T. & Jouzel, J. Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J. Geophys. Res. 106, 28081–28088 (2001)

    Article  ADS  Google Scholar 

  22. IAEA. http://isohis.iaea.org/userupdate/GNIP2001yearly.xls (2001).

  23. Garzione, C. N., Dettman, D. L. & Horton, B. K. Carbonate oxygen isotope paleoaltimetry: Evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 212, 119–140 (2004)

    Article  Google Scholar 

  24. Beaumont, C., Fullsack, P. & Hamilton, J. in Thrust Tectonics (ed. McClay, K. R.) 1–18 (Chapman & Hall, London, 1992)

    Book  Google Scholar 

  25. Spicer, R. A. et al. Constant elevation of southern Tibet over the past 15 million years. Nature 421, 622–624 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Zhu, B., Kidd, W. S. F., Rowley, D. B., Currie, B. S. & Shafique, N. Age of initiation of the India–Asia collision in the East-Central Himalaya. J. Geol. 113, 265–285 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Rowley, D. B. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth Planet. Sci. Lett. 145, 1–13 (1996)

    Article  ADS  CAS  Google Scholar 

  28. Berggren, W. A., Kent, D. V., Swisher, C. C. III & Aubry, M. P. in Time Scales and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M. P. & Hardenbohl, J.) 129–218 (Society of Economic Paleontologists and Mineralogists, Tulsa, Oklahoma, 1995)

    Book  Google Scholar 

  29. Cyr, A., Currie, B. S. & Rowley, D. B. Geochemical and stable isotopic evaluation of Fenghuoshan Group lacustrine carbonates, north-central Tibet: Implications for the paleoaltimetry of Late Eocene Tibetan Plateau. J. Geol. 113, 517–533 (2005)

    Article  ADS  CAS  Google Scholar 

  30. Graham, S. A. et al. Stable isotope records of Cenozoic climate and topography, Tibetan Plateau and Tarim Basin. Am. J. Sci. 305, 101–118 (2005)

    Article  ADS  CAS  Google Scholar 

  31. LePichon, X., Fournier, M. & Jolivet, L. Kinematics, topography, shortening and extrusion in the India–Eurasia collision. Tectonics 11, 1085–1098 (1992)

    Article  ADS  Google Scholar 

  32. Friedman, I. & O'Neil, J. R. in Data of Geochemistry (ed. Fleischer, M.) 1–12 (US Geological Survey Prof. Pap. 440-K, Washington DC, 1977)

    Google Scholar 

Download references

Acknowledgements

Particular thanks are extended to D. Schrag for use of his laboratory at Harvard University for the oxygen and carbon isotopic analyses. We thank M. Haizhou of the Salt Lake Institute, Chinese Academy of Sciences, Xining, for logistical assistance and arranging access to sites in northern and central Tibet. We also thank A. Cyr for assistance in the field. D.B.R. thanks fellow members of the Earth System Evolution Program of the Canadian Institute for Advanced Research for discussion and comments. This work was funded by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Rowley.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowley, D., Currie, B. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439, 677–681 (2006). https://doi.org/10.1038/nature04506

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04506

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing