Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

From angiogenesis to neuropathology

Abstract

Angiogenesis — the growth of new blood vessels — is a crucial force for shaping the nervous system and protecting it from disease. Recent advances have improved our understanding of how the brain and other tissues grow new blood vessels under normal and pathological conditions. Angiogenesis factors, especially vascular endothelial growth factor, are now known to have roles in the birth of new neurons (neurogenesis), the prevention or mitigation of neuronal injury (neuroprotection), and the pathogenesis of stroke, Alzheimer's disease and motor neuron disease. As our understanding of pathophysiology grows, these developments may point the way towards new molecular and cell-based therapies.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Vascularization of the central nervous system.
Figure 2: Adult neurogenesis.
Figure 3: Mechanisms of direct neuronal effects of VEGF.
Figure 4: VEGF in stroke.
Figure 5: VEGF and motor neuron disease.

References

  1. Beck, L. Jr & D'Amore, P. A. Vascular development: cellular and molecular regulation. FASEB J. 11, 365–373 (1997).

    CAS  PubMed  Google Scholar 

  2. Risau, W. Mechanisms of angiogenesis. Nature 386, 671–674 (1997).

    ADS  CAS  PubMed  Google Scholar 

  3. Ballabh, P., Braun, A. & Nedergaard, M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis. 16, 1–13 (2004).

    CAS  PubMed  Google Scholar 

  4. Keck, P. J. et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246, 1309–1312 (1989).

    ADS  CAS  PubMed  Google Scholar 

  5. Leung, D. W., Cachianes, G., Kuang, W. -J., Goeddel, D. V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989).

    ADS  CAS  PubMed  Google Scholar 

  6. Goldberg, M. A. & Schneider, T. J. Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J. Biol. Chem. 269, 4355–4359 (1994).

    CAS  PubMed  Google Scholar 

  7. Helton, R. et al. Brain-specific knock-out of hypoxia-inducible factor-1α reduces rather than increases hypoxic–ischemic damage. J. Neurosci. 25, 4099–4107 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cross, M. J., Dixelius, J., Matsumoto, T. & Claesson-Welsh, L. VEGF-receptor signal transduction. Trends Biochem. Sci. 28, 488–494 (2003).

    CAS  PubMed  Google Scholar 

  9. Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nature Med. 9, 669–676 (2003).

    CAS  PubMed  Google Scholar 

  10. Ment, L. R. et al. Vascular endothelial growth factor mediates reactive angiogenesis in the postnatal developing brain. Dev. Brain Res. 100, 52–61 (1997).

    CAS  Google Scholar 

  11. Krum, J. M. & Rosenstein, J. M. Patterns of angiogenesis in neural transplant models: II. Fetal neocortical transplants. J. Comp. Neurol. 271, 331–345 (1988).

    CAS  PubMed  Google Scholar 

  12. Broadwell, R. D. et al. Angiogenesis and the blood–brain barrier in solid and dissociated cell grafts within the CNS. Prog. Brain Res. 82, 95–101 (1990).

    CAS  PubMed  Google Scholar 

  13. Geny, C. et al. Long-term delayed vascularization of human neural transplants to the rat brain. J. Neurosci. 14, 7553–7562 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Plate, K. H., Breier, G., Weich, H. A. & Risau, W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359, 845–848 (1992).

    ADS  CAS  PubMed  Google Scholar 

  15. Kim, K. J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841–844 (1993).

    ADS  CAS  PubMed  Google Scholar 

  16. Weis, S. M. & Cheresh, D. A. Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437, 497–504 (2005).

    ADS  CAS  PubMed  Google Scholar 

  17. Ellerby, H. M. et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nature Med. 5, 1032–1038 (1999).

    CAS  PubMed  Google Scholar 

  18. Dirnagl, U., Simon, R. P. & Hallenbeck, J. M. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci. 26, 248–254 (2003).

    CAS  PubMed  Google Scholar 

  19. Krupinski, J., Kaluza, J., Kumar, P., Kumar, S. & Wang, J. M. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 25, 1794–1798 (1994).

    CAS  PubMed  Google Scholar 

  20. Chen, H. H., Chien, C. -H. & Liu, H. M. Correlation between angiogenesis and basic fibroblast growth factor expression in experimental brain infarct. Stroke 25, 1651–1657 (1994).

    CAS  PubMed  Google Scholar 

  21. Zhang, Z. G. et al. VEGF enhances angiogenesis and promotes blood–brain barrier leakage in the ischemic brain. J. Clin. Invest. 106, 829–838 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. van Bruggen, N. et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J. Clin. Invest. 104, 1613–1620 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Thurston, G. et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nature Med. 6, 460–463 (2000).

    CAS  PubMed  Google Scholar 

  24. Sharp, F. R. & Bernaudin, M. HIF1 and oxygen sensing in the brain. Nature Rev. Neurosci. 5, 437–448 (2004).

    CAS  Google Scholar 

  25. Marchuk, D. A., Srinivasan, S., Squire, T. L. & Zawistowski, J. S. Vascular morphogenesis: tales of two syndromes. Hum. Mol. Genet. 12 Spec. No. 1, R97–R112 (2003).

    CAS  PubMed  Google Scholar 

  26. Zhu, Y. et al. Hypoxic induction of endoglin via mitogen-activated protein kinases in mouse brain microvascular endothelial cells. Stroke 34, 2483–2488 (2003).

    CAS  PubMed  Google Scholar 

  27. Abrous, D. N., Koehl, M. & Le Moal, M. Adult neurogenesis: from precursors to network and physiology. Physiol. Rev. 85, 523–569 (2005).

    CAS  PubMed  Google Scholar 

  28. Sanai, N. et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427, 740–744 (2004).

    ADS  CAS  PubMed  Google Scholar 

  29. van Praag, H. et al. Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034 (2002).

    ADS  CAS  PubMed  Google Scholar 

  30. Shors, T. J. et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature 410, 372–376 (2001).

    ADS  CAS  PubMed  Google Scholar 

  31. Parent, J. M. et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J. Neurosci. 17, 3727–3738 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Scharfman, H. E., Goodman, J. H. & Sollas, A. L. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J. Neurosci. 20, 6144–6158 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, J., Solway, K., Messing, R. O. & Sharp, F. R. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J. Neurosci. 18, 7768–7778 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gu, W., Brannstrom, T. & Wester, P. Cortical neurogenesis in adult rats after reversible photothrombotic stroke. J. Cereb. Blood Flow Metab. 20, 1166–1173 (2000).

    CAS  PubMed  Google Scholar 

  35. Jin, K. et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc. Natl Acad. Sci. USA 98, 4710–4715 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Parent, J. M., Valentin, V. V. & Lowenstein, D. H. Prolonged seizures increase proliferating neuroblasts in the adult rat subventricular zone–olfactory bulb pathway. J. Neurosci. 22, 3174–3188 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. & Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature Med. 8, 963–970 (2002).

    CAS  PubMed  Google Scholar 

  38. Nakatomi, H. et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110, 429–441 (2002).

    CAS  PubMed  Google Scholar 

  39. Parent, J. M., Vexler, Z. S., Gong, C., Derugin, N. & Ferriero, D. M. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann. Neurol. 52, 802–813 (2002).

    PubMed  Google Scholar 

  40. Jin, K. et al. Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol. Cell. Neurosci. 24, 171–189 (2003).

    CAS  PubMed  Google Scholar 

  41. Curtis, M. A. et al. Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proc. Natl Acad. Sci. USA 100, 9023–9027 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jin, K. et al. Increased hippocampal neurogenesis in Alzheimer's disease. Proc. Natl Acad. Sci. USA 101, 343–347 (2004).

    ADS  CAS  PubMed  Google Scholar 

  43. Jin, K. et al. Enhanced neurogenesis in Alzheimer's disease transgenic (PDGF-APPSw,Ind) mice. Proc. Natl Acad. Sci. USA 101, 13363–13367 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jin, K. et al. Fibroblast growth factor-2 promotes neurogenesis and neuroprotection and prolongs survival in a transgenic mouse model of Huntington disease. Proc. Natl Acad. Sci. USA 102, 18189–18194 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fallon, J. et al. In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc. Natl Acad. Sci. USA 97, 14686–14691 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao, M. et al. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc. Natl Acad. Sci. USA 100, 7925–7930 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chi, L. et al. Motor neuron degeneration promotes neural progenitor cell proliferation, migration and neurogenesis in the spinal cords of ALS mice. Stem Cells published online 11 August 2005; doi:10.1634/stemcells.2005–0076 (2005).

  48. Jin, K. et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl Acad. Sci. USA 99, 11946–11950 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schanzer, A. et al. Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol. 14, 237–248 (2004).

    PubMed  Google Scholar 

  50. Mani, N., Khaibullina, A., Krum, J. M. & Rosenstein, J. M. Astrocyte growth effects of vascular endothelial growth factor (VEGF) application to perinatal neocortical explants: receptor mediation and signal transduction pathways. Exp. Neurol. 192, 394–406 (2005).

    CAS  PubMed  Google Scholar 

  51. Jin, K. et al. Cerebral neurogenesis is induced by intranasal administration of growth factors. Ann. Neurol. 53, 405–409 (2003).

    CAS  PubMed  Google Scholar 

  52. Cao, L. et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nature Genet. 36, 827–835 (2004).

    CAS  PubMed  Google Scholar 

  53. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25 (1978).

    CAS  PubMed  Google Scholar 

  54. Palmer, T. D., Willhoite, A. R. & Gage, F. H. Vascular niche for adult hippocampal neurogenesis. J. Comp Neurol. 425, 479–494 (2000).

    CAS  PubMed  Google Scholar 

  55. Louissaint, A., Rao, S., Leventhal, C. & Goldman, S. A. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34, 945–960 (2002).

    CAS  PubMed  Google Scholar 

  56. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).

    ADS  CAS  PubMed  Google Scholar 

  57. Mukouyama, Y. S., Gerber, H. P., Ferrara, N., Gu, C. & Anderson, D. J. Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development 132, 941–952 (2005).

    CAS  PubMed  Google Scholar 

  58. Carmeliet, P. & Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature 436, 193–200 (2005).

    ADS  CAS  PubMed  Google Scholar 

  59. Haigh, J. J. et al. Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling. Dev. Biol. 262, 225–241 (2003).

    CAS  PubMed  Google Scholar 

  60. Sondell, M., Lundborg, G. & Kanje, M. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J. Neurosci. 19, 5731–5740 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Silverman, W. F., Krum, J. M., Mani, N. & Rosenstein, J. M. Vascular, glial and neuronal effects of vascular endothelial growth factor in mesencephalic explant cultures. Neuroscience 90, 1529–1541 (1999).

    CAS  PubMed  Google Scholar 

  62. Rosenstein, J. M., Mani, N., Khaibullina, A. & Krum, J. M. Neurotrophic effects of vascular endothelial growth factor on organotypic cortical explants and primary cortical neurons. J. Neurosci. 23, 11036–11044 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Khaibullina, A. A., Rosenstein, J. M. & Krum, J. M. Vascular endothelial growth factor promotes neurite maturation in primary CNS neuronal cultures. Dev. Brain Res. 148, 59–68 (2004).

    CAS  Google Scholar 

  64. Jin, K. L. et al. Vascular endothelial growth factor stimulates neurite outgrowth from cerebral cortical neurons via rho kinase signalling. J. Neurobiol. (in the press).

  65. Jin, K. L., Mao, X. O. & Greenberg, D. A. Vascular endothelial growth factor rescues HN33 neural cells from death induced by serum withdrawal. J. Mol. Neurosci. 14, 197–203 (2000).

    CAS  PubMed  Google Scholar 

  66. Jin, K. L., Mao, X. O. & Greenberg, D. A. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc. Natl Acad. Sci. USA 97, 10242–10247 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jin, K. et al. Caspase-3 and the regulation of hypoxic neuronal death by vascular endothelial growth factor. Neuroscience 108, 351–358 (2001).

    CAS  PubMed  Google Scholar 

  68. Matsuzaki, H. et al. Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades. FASEB J. 15, 1218–1220 (2001).

    CAS  PubMed  Google Scholar 

  69. Svensson, B. et al. Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an antiexcitotoxic, caspase-independent mechanism. J. Cereb. Blood Flow Metab. 22, 1170–1175 (2002).

    CAS  PubMed  Google Scholar 

  70. Kovacs, Z., Ikezaki, K., Samoto, K., Inamura, T. & Fukui, M. VEGF and Flt: expression time kinetics in rat brain infarct. Stroke 27, 1865–1873 (1996).

    CAS  PubMed  Google Scholar 

  71. Hayashi, T., Abe, K., Suzuki, H. & Itomaya, Y. Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke 28, 2039–2044 (1997).

    CAS  PubMed  Google Scholar 

  72. Lennmyr, F., Ata, K. A., Funa, K., Olsson, Y. & Terent, A. Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J. Neuropathol. Exp. Neurol. 57, 874–882 (1998).

    CAS  PubMed  Google Scholar 

  73. Plate, K. H., Beck, H., Danner, S., Allegrini, P. R. & Wiessner, C. Cell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion model of cerebral infarct. J. Neuropathol. Exp. Neurol. 58, 654–666 (1999).

    CAS  PubMed  Google Scholar 

  74. Rosenstein, J. M., Mani, N., Silverman, W. F. & Krum, J. M. Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo. Proc. Natl Acad. Sci. USA 95, 7086–7091 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Krum, J. M., Mani, N. & Rosenstein, J. M. Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience 110, 589–604 (2002).

    CAS  PubMed  Google Scholar 

  76. Hayashi, T., Abe, K. & Itoyama, Y. Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. J. Cereb. Blood Flow Metab. 18, 887–895 (1998).

    CAS  PubMed  Google Scholar 

  77. Bao, W. L., Lu, S. D., Wang, H. & Sun, F. Y. Intraventricular vascular endothelial growth factor antibody increases infarct volume following transient cerebral ischemia. Chung Kuo Yao Li Hsueh Pao 20, 313–318 (1999).

    CAS  PubMed  Google Scholar 

  78. Sun, Y. et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest. 111, 1843–1851 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sun, Y. et al. Increased severity of cerebral ischemic injury in vascular endothelial growth factor-B (VegfB)-deficient mice. J. Cereb. Blood Flow Metab. 24, 1146–1152 (2004).

    CAS  PubMed  Google Scholar 

  80. Kalaria, R. N. et al. Vascular endothelial growth factor in Alzheimer's disease and experimental cerebral ischemia. Brain Res. Mol. Brain Res. 62, 101–105 (1998).

    CAS  PubMed  Google Scholar 

  81. Del Bo, R. et al. Vascular endothelial growth factor gene variability is associated with increased risk for AD. Ann. Neurol. 57, 373–380 (2005).

    CAS  PubMed  Google Scholar 

  82. Schratzberger, P. et al. Reversal of experimental diabetic neuropathy by VEGF gene transfer. J. Clin. Invest. 107, 1083–1092 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Schratzberger, P. et al. Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy. Nature Med. 6, 405–413 (2000).

    CAS  PubMed  Google Scholar 

  84. Chattopadhyay, M. et al. HSV-mediated gene transfer of vascular endothelial growth factor to dorsal root ganglia prevents diabetic neuropathy. Gene Therapy 12, published online 21 April 2005; doi:10.1038/sj.gt.3302533 (2005).

  85. Eig, J. Luckiest Man: The Life and Death of Lou Gehrig (Simon & Schuster, New York, 2005).

    Google Scholar 

  86. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    ADS  CAS  PubMed  Google Scholar 

  87. Hadano, S. et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nature Genet. 29, 166–173 (2001).

    CAS  PubMed  Google Scholar 

  88. Yang, Y. et al. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nature Genet. 29, 160–165 (2001).

    CAS  Google Scholar 

  89. Chen, Y. Z. et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am. J. Hum. Genet. 74, 1128–1135 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Nishimura, A. L. et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am. J. Hum. Genet. 75, 822–831 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Oosthuyse, B. et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nature Genet. 28, 131–138 (2001).

    CAS  PubMed  Google Scholar 

  92. Lambrechts, D. et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nature Genet. 34, 383–394 (2003).

    CAS  PubMed  Google Scholar 

  93. Zheng, C., Nennesmo, I., Fadeel, B. & Henter, J. I. Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS. Ann. Neurol. 56, 564–567 (2004).

    CAS  PubMed  Google Scholar 

  94. Storkebaum, E. et al. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nature Neurosci. 8, 85–92 (2005).

    CAS  PubMed  Google Scholar 

  95. Azzouz, M. et al. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429, 413–417 (2004).

    ADS  CAS  PubMed  Google Scholar 

  96. La Spada, A. R., Wilson, E. M., Lubahn, D. B., Harding, A. E. & Fischbeck, K. H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    ADS  CAS  PubMed  Google Scholar 

  97. Sopher, B. L. et al. Androgen receptor YAC transgenic mice recapitulate SBMA motor neuronopathy and implicate VEGF164 in the motor neuron degeneration. Neuron 41, 687–699 (2004).

    CAS  PubMed  Google Scholar 

  98. Hillen, T. et al. Cause of stroke recurrence is multifactorial: patterns, risk factors, and outcomes of stroke recurrence in the South London Stroke Register. Stroke 34, 1457–1463 (2003).

    ADS  PubMed  Google Scholar 

  99. Raber, J. et al. Irradiation attenuates neurogenesis and exacerbates ischemia-induced deficits. Ann. Neurol. 55, 381–389 (2004).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants NS44921 (D.A.G.) and AG21980 (K.J.) and by the Buck Institute for Age Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Greenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Greenberg, D., Jin, K. From angiogenesis to neuropathology. Nature 438, 954–959 (2005). https://doi.org/10.1038/nature04481

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04481

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing