Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A magnetically collimated jet from an evolved star

Abstract

Planetary nebulae often have asymmetric shapes, even though their progenitor stars were symmetric; this structure could be the result of collimated jets from the evolved stars before they enter the planetary nebula phase1,2,3. Theoretical models have shown that magnetic fields could be the dominant source of jet-collimation in evolved stars4,5, just as these fields are thought to collimate outflows in other astrophysical sources, such as active galactic nuclei6,7,8,9 and proto-stars10,11. But hitherto there have been no direct observations of both the magnetic field direction and strength in any collimated jet. Here we report measurements of the polarization of water vapour masers that trace the precessing jet emanating from the asymptotic giant branch star W43A (at a distance of 2.6 kpc from the Sun), which is undergoing rapid evolution into a planetary nebula2,12. The masers occur in two clusters at opposing tips of the jets, 1,000 au from the star. We conclude from the data that the magnetic field is indeed collimating the jet.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The spatial distribution, linear polarization vectors and inferred magnetic field direction of the H 2 O masers in the jet of W43A.
Figure 2: The total power ( I ) and circular polarization spectrum ( V ) of a 22 GHz H 2 O maser feature in the southern tip of the collimated jet of W43A.

References

  1. Sahai, R. & Trager, J. T. Multipolar bubbles and jets in low-excitation planetary nebulae: toward a new understanding of the formation and shaping of planetary nebulae. Astron. J. 116, 1357–1366 (1998)

    ADS  Article  Google Scholar 

  2. Imai, H., Obara, K., Diamond, P. J., Omodaka, T. & Sasao, T. A collimated jet of molecular gas from a star on the asymptotic giant branch. Nature 417, 829–831 (2002)

    ADS  CAS  Article  Google Scholar 

  3. Miranda, L. F., Gómez, Y., Anglada, G. & Torrelles, J. M. Water-maser emission from a planetary nebula with a magnetized torus. Nature 414, 284–286 (2001)

    ADS  CAS  Article  Google Scholar 

  4. Blackman, E. G., Frank, A., Markiel, J. A., Thomas, J. H. & Van Horn, H. M. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae. Nature 409, 485–487 (2001)

    ADS  CAS  Article  Google Scholar 

  5. García-Segura, G., López, J. A. & Franco, J. Magnetically driven winds from post-asymptotic giant branch stars: solutions for high-speed winds and extreme collimation. Astrophys. J. 618, 919–925 (2005)

    ADS  Article  Google Scholar 

  6. Pearson, T. J. & Readhead, A. C. S. The milliarcsecond structure of a complete sample of radio sources. II—First-epoch maps at 5 GHz. Astrophys. J. 328, 114–142 (1988)

    ADS  Article  Google Scholar 

  7. Blandford, R. D. & Payne, D. G. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc. 199, 883–903 (1982)

    ADS  Article  Google Scholar 

  8. Xu, C., Livio, M. & Baum, S. Radio-loud and radio-quiet Active Galactic Nuclei. Astron. J. 118, 1169–1176 (1999)

    ADS  CAS  Article  Google Scholar 

  9. Gabuzda, D. C., Murray, É. & Cronin, P. Helical magnetic fields associated with the relativistic jets of four BL Lac objects. Mon. Not. R. Astron. Soc. 351, L89–L93 (2004)

    ADS  Article  Google Scholar 

  10. Ouyed, R., Pudritz, R. E. & Stone, J. M. Episodic jets from black holes and protostars. Nature 385, 409–414 (1997)

    ADS  CAS  Article  Google Scholar 

  11. Zinnecker, H., McCaughrean, M. J. & Rayner, J. T. A symmetrically pulsed jet of gas from an invisible protostar in Orion. Nature 394, 862–865 (1998)

    ADS  CAS  Article  Google Scholar 

  12. Diamond, P. J., Norris, R. P., Rowland, P. R., Booth, R. S. & Nyman, L.-A. The circumstellar envelopes around OH/IR stars. Mon. Not. R. Astron. Soc. 212, 1–21 (1985)

    ADS  CAS  Article  Google Scholar 

  13. Vlemmings, W. H. T., Diamond, P. J., van Langevelde, H. J. & Torrelles, J. M. The magnetic field in the star-forming region Cepheus A from H2O maser polarization observations. Astron. Astrophys. (in the press); preprint at http://arxiv.org/astro-ph/0510452 (2005)

  14. Vlemmings, W. H. T., Diamond, P. J. & van Langevelde, H. J. Circular polarization of water masers in the circumstellar envelopes of late type stars. Astron. Astrophys. 394, 589–602 (2002)

    ADS  Article  Google Scholar 

  15. Vlemmings, W. H. T., van Langevelde, H. J. & Diamond, P. J. The magnetic field around late-type stars revealed by the circumstellar H2O masers. Astron. Astrophys. 434, 1029–1038 (2005)

    ADS  CAS  Article  Google Scholar 

  16. Nedoluha, G. E. & Watson, W. D. The Zeeman effect in astrophysical water masers and the observation of strong magnetic fields in regions of star formation. Astrophys. J. 384, 185–196 (1992)

    ADS  CAS  Article  Google Scholar 

  17. Goldreich, P., Keeley, D. A. & Kwan, J. Y. Astrophysical masers. II. Polarization properties. Astrophys. J. 179, 111–134 (1973)

    ADS  Article  Google Scholar 

  18. Kemball, A. J. & Diamond, P. J. Imaging the magnetic field in the atmosphere of TX Cam. Astrophys. J. 481, L111–L114 (1997)

    ADS  CAS  Article  Google Scholar 

  19. Elitzur, M. Astronomical Masers (Kluwer Academic, Dordrecht, 1992)

    Book  Google Scholar 

  20. Crutcher, R. M. Magnetic fields in molecular clouds: observations confront theory. Astrophys. J. 520, 706–713 (1999)

    ADS  CAS  Article  Google Scholar 

  21. Elitzur, M., Hollenbach, D. J. & McKee, C. F. Planar H2O masers in star-forming regions. Astrophys. J. 394, 221–227 (1992)

    ADS  Article  Google Scholar 

  22. Reid, M. J. et al. Stellar OH masers and magnetic fields—VLBI observations of U Orionis and IRC +10420. Astrophys. J. 227, L89–L92 (1979)

    ADS  CAS  Article  Google Scholar 

  23. Chevalier, R. A. & Luo, D. Magnetic shaping of planetary nebulae and other stellar wind bubbles. Astrophys. J. 421, 225–235 (1994)

    ADS  Article  Google Scholar 

  24. García-Segura, G., Langer, N., Rózuczka, M. & Franco, J. Shaping bipolar and elliptical planetary nebulae: effects of stellar rotation, photoionization heating, and magnetic fields. Astrophys. J. 517, 767–781 (1999)

    ADS  Article  Google Scholar 

  25. Sahai, R. Bipolar and multipolar jets in protoplanetary and planetary nebulae. Rev. Mex. Astron. Astrofis. 13, 133–138 (2002)

    CAS  Google Scholar 

  26. Blackman, E. G. in Asymmetrical Planetary Nebulae III: Winds, Structure and the Thunderbird (eds Meixner, M., Kastner, J. H., Balick, B. & Soker, N.) 401–407 (ASP Conference Series Vol. 313, Astronomical Society of the Pacific, San Francisco, 2004)

    Google Scholar 

  27. Imai, H., Nakashima, J., Diamond, P. J., Miyazaki, A. & Deguchi, S. A biconically expanding flow in W43A traced by SiO maser emission. Astrophys. J. 622, L125–L128 (2005)

    ADS  CAS  Article  Google Scholar 

  28. Lery, T. et al. Magnetised protostellar bipolar outflows. I. Self-similar model with Poynting flux. Astron. Astrophys. 350, 254–274 (1999)

    ADS  CAS  Google Scholar 

  29. Lebedev, S. V. et al. Magnetic tower outflows from a radial wire array Z-pinch. Mon. Not. R. Astron. Soc. 361, 97–108 (2005)

    ADS  Article  Google Scholar 

  30. Asada, K. et al. A helical magnetic field in the jet of 3C 273. Publ. Astron. Soc. Jpn 54, L39–L43 (2002)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

NRAO is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. W.H.T.V. was supported by a Marie-Curie Intra-European fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter H. T. Vlemmings.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vlemmings, W., Diamond, P. & Imai, H. A magnetically collimated jet from an evolved star. Nature 440, 58–60 (2006). https://doi.org/10.1038/nature04466

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04466

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing