A semiconductor source of triggered entangled photon pairs

Abstract

Entangled photon pairs are an important resource in quantum optics1, and are essential for quantum information2 applications such as quantum key distribution3,4 and controlled quantum logic operations5. The radiative decay of biexcitons—that is, states consisting of two bound electron–hole pairs—in a quantum dot has been proposed as a source of triggered polarization-entangled photon pairs6. To date, however, experiments have indicated that a splitting of the intermediate exciton energy yields only classically correlated emission7,8,9. Here we demonstrate triggered photon pair emission from single quantum dots suggestive of polarization entanglement. We achieve this by tuning the splitting to zero, through either application of an in-plane magnetic field or careful control of growth conditions. Entangled photon pairs generated ‘on demand’ have significant fundamental advantages over other schemes10,11,12,13, which can suffer from multiple pair emission, or require post-selection techniques or the use of photon-number discriminating detectors. Furthermore, control over the pair generation time is essential for scaling many quantum information schemes beyond a few gates. Our results suggest that a triggered entangled photon pair source could be implemented by a simple semiconductor light-emitting diode14.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Polarized photoluminescence spectra from single quantum dots.
Figure 2: Second order cross correlation of biexciton with exciton photons from conventional and degenerate single quantum dots.
Figure 3: Density matrices for the biexciton–exciton two-photon cascade from conventional and degenerate quantum dots.

References

  1. 1

    Walls, D. F. & Milburn, G. J. Quantum Optics (Springer, Berlin, 1994)

  2. 2

    Bouwmeester, D., Ekert, A. K. & Zeilinger, A. The Physics of Quantum Information (Springer, Berlin, 2000)

  3. 3

    Ekert, A. K. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661–663 (1991)

  4. 4

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

  5. 5

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

  6. 6

    Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000)

  7. 7

    Stevenson, R. M. et al. Quantum dots as a photon source for passive quantum key encoding. Phys. Rev. B 66, 081302 (2002)

  8. 8

    Santori, C., Fattal, D., Pelton, M., Solomon, G. S. & Yamamoto, Y. Polarization-correlated photon pairs from a single quantum dot. Phys. Rev. B 66, 045308 (2002)

  9. 9

    Ulrich, S. M., Strauf, S., Michler, P., Bacher, G. & Forchel, A. Triggered polarization-correlated photon pairs from a single CdSe quantum dot. Appl. Phys. Lett. 83, 1848–1850 (2003)

  10. 10

    Shih, Y. H. & Alley, C. O. New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett. 61, 2921–2924 (1988)

  11. 11

    Ou, Z. Y. & Mandel, L. Violation of Bell's inequality and classical probability in a two-photon correlation experiment. Phys. Rev. Lett. 61, 50–53 (1988)

  12. 12

    Kiess, T. E., Shih, Y. H., Sergienko, A. V. & Alley, C. O. Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by type-II parametric down-conversion. Phys. Rev. Lett. 71, 3893–3897 (1993)

  13. 13

    Fattal, D. et al. Entanglement formation and violation of Bell's inequality with a semiconductor single photon source. Phys. Rev. Lett. 92, 037903 (2004)

  14. 14

    Yuan, Z. et al. Electrically driven single-photon source. Science 295, 102–105 (2002)

  15. 15

    Edamatsu, K., Oohata, G., Shimizu, R. & Itoh, T. Generation of ultraviolet entangled photons in a semiconductor. Nature 431, 167–170 (2004)

  16. 16

    Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002)

  17. 17

    Aspect, A., Grangier, P. & Roger, G. Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A new violation of Bell's inequalities. Phys. Rev. Lett. 49, 91–94 (1982)

  18. 18

    Gammon, D., Snow, E. S., Shanabrook, B. V.,, Katzer, D. S. & Park, D. Fine structure splitting in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 76, 3005–3008 (1996)

  19. 19

    Bimberg, D., Grundmann, M. & Ledentsov, N. N. Quantum Dot Heterostructures (Wiley, Chichester, 1999)

  20. 20

    Young, R. J. et al. Inversion of exciton level splitting in quantum dots. Phys. Rev. B 72, 113305 (2005)

  21. 21

    Thompson, R. M. et al. Single-photon emission from exciton complexes in individual quantum dots. Phys. Rev. B 64, 201302 (2001)

  22. 22

    Rodt, S. et al. Repulsive exciton-exciton interaction in quantum dots. Phys. Rev. B 68, 035331 (2003)

  23. 23

    White, A. G., James, D. F. V., Eberhard, P. H. & Kwiat, P. G. Nonmaximally entangled states: Production, characterization, and utilization. Phys. Rev. Lett. 83, 3103–3107 (1999)

  24. 24

    James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

  25. 25

    Kwiat, P. G., Barraza-Lopez, S., Stefanov, A. & Gisin, N. Experimental entanglement distillation and ‘hidden’ non-locality. Nature 409, 1014–1017 (2001)

  26. 26

    Santori, C., Pelton, M., Solomon, G., Dale, Y. & Yamamoto, Y. Triggered single photons from a quantum dot. Phys. Rev. Lett. 86, 1502–1505 (2001)

  27. 27

    Pelton, M. et al. Efficient source of single photons: A single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002)

  28. 28

    Bennett, A. J., Unitt, D. C., Atkinson, P., Ritchie, D. & Shields, A. J. High performance single photon sources from photolithographically defined pillar microcavities. Opt. Express 13, 50–55 (2005)

  29. 29

    Bayer, M. & Forchel, A. Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots. Phys. Rev. B 65, 041308 (2002)

  30. 30

    Stevenson, R. M. et al. Magnetic-field-induced reduction of the exciton polarisation splitting in InAs quantum dots. Phys. Rev. B (in the press)

Download references

Acknowledgements

We acknowledge continued support from M. Pepper. This work was partially funded by the EU projects RAMBOQ, QAP and SANDiE, and by the EPSRC through the IRC for Quantum Information Processing.

Author information

Correspondence to R. M. Stevenson.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stevenson, R., Young, R., Atkinson, P. et al. A semiconductor source of triggered entangled photon pairs. Nature 439, 179–182 (2006). https://doi.org/10.1038/nature04446

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.