Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation


Point defects largely govern the electrochemical properties of oxides: at low defect concentrations, conductivity increases with concentration; however, at higher concentrations, defect–defect interactions start to dominate1,2. Thus, in searching for electrochemically active materials for fuel cell anodes, high defect concentration is generally avoided. Here we describe an oxide anode formed from lanthanum-substituted strontium titanate (La-SrTiO3) in which we control the oxygen stoichiometry in order to break down the extended defect intergrowth regions and create phases with considerable disordered oxygen defects. We substitute Ti in these phases with Ga and Mn to induce redox activity and allow more flexible coordination. The material demonstrates impressive fuel cell performance using wet hydrogen at 950 °C. It is also important for fuel cell technology to achieve efficient electrode operation with different hydrocarbon fuels3,4, although such fuels are more demanding than pure hydrogen. The best anode materials to date—Ni-YSZ (yttria-stabilized zirconia) cermets5—suffer some disadvantages related to low tolerance to sulphur6, carbon build-up when using hydrocarbon fuels7 (though device modifications and lower temperature operation can avoid this8,9) and volume instability on redox cycling. Our anode material is very active for methane oxidation at high temperatures, with open circuit voltages in excess of 1.2 V. The materials design concept that we use here could lead to devices that enable more-efficient energy extraction from fossil fuels and carbon-neutral fuels.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Relation between microstructure, composition and conductivity of the ‘La 4 Sr n -4 Ti n O 3 n +2 ’ series.
Figure 2: Polarization measurements on LSTMG/YSZ with varying temperatures and atmospheres.
Figure 3: Performance plots in different atmospheres.
Figure 4: Electrode interface.


  1. 1

    Kilner, J. A. & Steele, B. C. H. The effect of ion size on the energy of association between oxygen vacancies and dopant cations in oxide solid electrolytes. J. Electrochem. Soc. 129, C143–C148 (1982)

    Article  Google Scholar 

  2. 2

    Irvine, J. T. S., Feighery, A. J., Fagg, D. P. & García-Martín, S. Structural studies on the optimisation of fast oxide ion transport. Solid State Ionics 136/137, 879–885 (2000)

    Article  Google Scholar 

  3. 3

    Atkinson, A. et al. Advanced anodes for high-temperature fuel cells. Nature Mater. 3, 17–27 (2004)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Primdahl, S., Hansen, J. R., Grahl-Madsen, L. & Larsen, P. H. Sr-doped LaCrO3 anode for solid oxide fuel cells. J. Electrochem. Soc. 148, A74–A81 (2001)

    CAS  Article  Google Scholar 

  5. 5

    Singhal, S. C. & Kendall, K. High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications (Elsevier, Oxford, 2004)

    Google Scholar 

  6. 6

    Matsuzaki, Y. & Yasuda, I. The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time and impurity concentration. Solid State Ionics 132, 261–269 (2000)

    CAS  Article  Google Scholar 

  7. 7

    Zhu, W. Z. & Deevi, S. C. A review on the status of anode materials for solid oxide fuel cells. Mater. Sci. Eng. A 362, 228–239 (2003)

    Article  Google Scholar 

  8. 8

    Park, S., Vohs, J. M. & Gorte, R. J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265–267 (2000)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Perry, E., Tsai, T. & Barnett, S. A. A direct-methane fuel cell with a ceria-based anode. Nature 400, 649–651 (1999)

    ADS  Article  Google Scholar 

  10. 10

    Tao, S. W. & Irvine, J. T. S. A redox-stable efficient anode for solid-oxide fuel cells. Nature Mater. 2, 320–323 (2003)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Canales-Vázquez, J., Tao, S. W. & Irvine, J. T. S. Electrical properties in La2Sr4Ti6O19-δ: a potential anode for high temperature fuel cells. Solid State Ionics 159, 159–165 (2003)

    Article  Google Scholar 

  12. 12

    Marina, O. A., Canfield, N. L. & Stevenson, J. W. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics 149, 21–28 (2002)

    CAS  Article  Google Scholar 

  13. 13

    Mukundan, R., Brosha, E. L. & Garzon, F. H. Sulfur tolerant anodes for SOFCs. Electrochem. Solid-State Lett. 7, A4–A7 (2004)

    Article  Google Scholar 

  14. 14

    Canales-Vázquez, J., Ruiz-Morales, J. C., Irvine, J. T. S. & Zhou, W. Sc-substituted oxygen excess titanates as fuel electrodes for SOFC. J. Electrochem. Soc. 152, 1458–1465 (2005)

    Article  Google Scholar 

  15. 15

    Marina, O. A. & Pederson, L. R. in Proc. 5th European Solid Oxide Fuel Cell Forum (ed. Huijsmans, J.) 481–489 (European Fuel Cell Forum, Oberrohrdorf, Switzerland, 2002)

    Google Scholar 

  16. 16

    Canales-Vázquez, J., Smith, M. J., Irvine, J. T. S. & Zhou, W. Studies on the reorganisation of extended defects with increasing n in the perovskite-based La4Srn-4TinO3n+2 series. Adv. Funct. Mater. 15, 1000–1008 (2005)

    Article  Google Scholar 

  17. 17

    Holtappels, P., Bradley, J. L., Irvine, J. T. S., Kaiser, A. & Mogensen, M. Electrochemical characterization of ceramic SOFC anodes. J. Electrochem. Soc. 148, A923–A929 (2001)

    CAS  Article  Google Scholar 

  18. 18

    Irvine, J. T. S., et al. Optimisation of perovskite titanates and niobates as anode materials for SOFCs. in Proc. 4th European SOFC Forum (ed. McEvoy, A. J.) 471–477 (European Fuel Cell Forum, Oberrohrdorf, Switzerland, 2000)

    Google Scholar 

  19. 19

    Poeppelmeier, K. R., Leonowicz, M. E. & Longo, J. M. CaMnO2.5 and Ca2MnO3.5 — new oxygen-defect perovskite-type oxides. J. Solid State Chem. 44, 89–98 (1982)

    ADS  CAS  Article  Google Scholar 

  20. 20

    McIntosh, S., Vohs, J. M. & Gorte, R. J. Effect of precious-metal dopants on SOFC anodes for direct utilization of hydrocarbons. Electrochem. Solid-State Lett. 6, A240–A243 (2003)

    CAS  Article  Google Scholar 

  21. 21

    Liu, J. & Barnett, S. A. Operation of anode-supported solid oxide fuel cells on methane and natural gas. Solid State Ionics 158, 11–16 (2003)

    CAS  Article  Google Scholar 

  22. 22

    Lin, Y., Zhan, Z., Liu, J. & Barnett, S. A. Direct operation of solid oxide fuel cell with methane fuel. Solid State Ionics 176, 1827–1835 (2005)

    CAS  Article  Google Scholar 

  23. 23

    Ovalle, A., Ruiz-Morales, J. C., Canales-Vázquez, J., Marrero-López, D. & Irvine, J. T. S. Mn-substituted titanates as efficient anodes for direct methane SOFCs. Solid State Ionics (submitted).

Download references


This work was funded partly by a EU Marie Curie Fellowship and by EPSRC.

Author information



Corresponding author

Correspondence to John T. S. Irvine.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ruiz-Morales, J., Canales-Vázquez, J., Savaniu, C. et al. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature 439, 568–571 (2006). https://doi.org/10.1038/nature04438

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing