Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends

Abstract

Chromosomes interact through their kinetochores with microtubule plus ends and they are segregated to the spindle poles as the kinetochore microtubules shorten during anaphase A of mitosis. The molecular natures and identities of coupling proteins that allow microtubule depolymerization to pull chromosomes to poles during anaphase have long remained elusive1. In budding yeast, the ten-protein Dam1 complex is a critical microtubule-binding component of the kinetochore2 that oligomerizes into a 50-nm ring around a microtubule in vitro3,4. Here we show, with the use of a real-time, two-colour fluorescence microscopy assay, that the ring complex moves processively for several micrometres at the ends of depolymerizing microtubules without detaching from the lattice. Electron microscopic analysis of ‘end-on views’ revealed a 16-fold symmetry of the kinetochore rings. This out-of-register arrangement with respect to the 13-fold microtubule symmetry is consistent with a sliding mechanism based on an electrostatically coupled ring–microtubule interface. The Dam1 ring complex is a molecular device that can translate the force generated by microtubule depolymerization into movement along the lattice to facilitate chromosome segregation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: A microscopy assay to study the interaction of the Dam1 complex with dynamic microtubules in vitro.
Figure 2: Collection of multiple Dam1 rings at a depolymerizing microtubule end.
Figure 3: One-dimensional diffusion of Dam1 rings on stable microtubules.
Figure 4: Image analysis of the Dam1 ring complex around microtubules.

References

  1. Maiato, H., Deluca, J., Salmon, E. D. & Earnshaw, W. C. The dynamic kinetochore–microtubule interface. J. Cell Sci. 117, 5461–5477 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. Cheeseman, I. M. et al. Implication of a novel multiprotein Dam1p complex in outer kinetochore function. J. Cell Biol. 155, 1137–1145 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Westermann, S. et al. Formation of a dynamic kinetochore–microtubule interface through assembly of the Dam1 ring complex. Mol. Cell 17, 277–290 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. Miranda, J. J., De Wulf, P., Sorger, P. K. & Harrison, S. C. The yeast DASH complex forms closed rings on microtubules. Nature Struct. Mol. Biol. 12, 138–143 (2005)

    Article  CAS  Google Scholar 

  5. Inoue, S. & Salmon, E. D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6, 1619–1640 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koshland, D. E., Mitchison, T. J. & Kirschner, M. W. Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature 331, 499–504 (1988)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Lombillo, V. A., Stewart, R. J. & McIntosh, J. R. Minus-end-directed motion of kinesin-coated microspheres driven by microtubule depolymerization. Nature 373, 161–164 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Coue, M., Lombillo, V. A. & McIntosh, J. R. Microtubule depolymerization promotes particle and chromosome movement in vitro. J. Cell Biol. 112, 1165–1175 (1991)

    Article  CAS  PubMed  Google Scholar 

  9. Hill, T. L. Theoretical problems related to the attachment of microtubules to kinetochores. Proc. Natl Acad. Sci. USA 82, 4404–4408 (1985)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Molodtsov, M. I., Grishchuk, E. L., Efremov, A. K., McIntosh, J. R. & Ataullakhanov, F. I. Force production by depolymerizing microtubules: a theoretical study. Proc. Natl Acad. Sci. USA 102, 4353–4358 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Straight, A. F., Marshall, W. F., Sedat, J. W. & Murray, A. W. Mitosis in living budding yeast: anaphase A but no metaphase plate. Science 277, 574–578 (1997)

    Article  CAS  PubMed  Google Scholar 

  12. Maddox, P. S., Bloom, K. S. & Salmon, E. D. The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae. Nature Cell Biol. 2, 36–41 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. De Wulf, P., McAinsh, A. D. & Sorger, P. K. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev. 17, 2902–2921 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Westermann, S. et al. Architecture of the budding yeast kinetochore reveals a conserved molecular core. J. Cell Biol. 163, 215–222 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheeseman, I. M., Drubin, D. G. & Barnes, G. Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast. J. Cell Biol. 157, 199–203 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheeseman, I. M., Enquist-Newman, M., Muller-Reichert, T., Drubin, D. G. & Barnes, G. Mitotic spindle integrity and kinetochore function linked by the Duo1p/Dam1p complex. J. Cell Biol. 152, 197–212 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheeseman, I. M. et al. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 111, 163–172 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. Tanaka, K. et al. Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434, 987–994 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Kapitein, L. C. et al. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435, 114–118 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Vale, R. D., Soll, D. R. & Gibbons, I. R. One-dimensional diffusion of microtubules bound to flagellar dynein. Cell 59, 915–925 (1989)

    Article  CAS  PubMed  Google Scholar 

  21. Howard, J. & Hyman, A. A. Dynamics and mechanics of the microtubule plus end. Nature 422, 753–758 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Wang, H. W. & Nogales, E. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435, 911–915 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hyman, A. A., Chretien, D., Arnal, I. & Wade, R. H. Structural changes accompanying GTP hydrolysis in microtubules: information from a slowly hydrolyzable analogue guanylyl-(α,β)-methylene-diphosphonate. J. Cell Biol. 128, 117–125 (1995)

    Article  CAS  PubMed  Google Scholar 

  24. Mandelkow, E. M., Mandelkow, E. & Milligan, R. A. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J. Cell Biol. 114, 977–991 (1991)

    Article  CAS  PubMed  Google Scholar 

  25. Mahadevan, L. & Mitchison, T. J. Cell biology: powerful curves. Nature 435, 895–897 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Grishchuk, E. L., Molodtsov, M. I, Ataullakhanov, F. I. & McIntosh, J. R. Force production by disassembling microtubules. Nature 438, 384–388 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Pinsky, B. A. & Biggins, S. The spindle checkpoint: tension versus attachment. Trends Cell Biol. 15, 486–493 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Liu, X., McLeod, I., Anderson, S., Yates, J. R. & He, X. Molecular analysis of kinetochore architecture in fission yeast. EMBO J. 24, 2919–2930 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sanchez-Perez, I. et al. The DASH complex and Klp5/Klp6 kinesin coordinate bipolar chromosome attachment in fission yeast. EMBO J. 24, 2931–2943 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Walzcak for the gift of recombinant XMCAK1; M. Kaksonen and C. Toret for help with image analysis; and all members of the Barnes/Drubin laboratory for discussions. This work was supported by grants from the National Institute of General Medical Sciences to G.B. and E.N., and from the Office of Basic Energy Science of the US Department of Energy. E.N. is a Howard Hughes Medical Institute Investigator. Research in this study was in part supported by a grant to D.G.D. from Phillip Morris USA Inc. and Phillip Morris International and by a postdoctoral fellowship of the Deutsche Forschungsgemeinschaft to S.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georjana Barnes.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Movie 1

Processive movement of the Dam1 ring complex on depolymerizing microtubule ends. (MOV 1666 kb)

Supplementary Movie 2

Microtubule is free in solution and depolymerizes from both ends. (MOV 830 kb)

Supplementary Movie 3

Force generation at the depolymerizing end. (MOV 714 kb)

Supplementary Movie 4

Dam1-coupled microbeads translocate with disassembling microtubule ends. (MOV 605 kb)

Supplementary Movie 5

Dam1 rings are “collected” at the depolymerizing end. (MOV 212 kb)

Supplementary Movie 6

Stabilization of microtubule ends as a function of the Dam1 ring concentration. (MOV 1288 kb)

Supplementary Movie 7

Alexa488 Dam1 complex shows undirected one-dimensional diffusion on taxol-stabilized microtubules. (MOV 10385 kb)

Supplementary Movie 8

Individual Dam1 signal on a single taxol stabilized microtubule shows back and forth movement. Time between frames is 1 second. (MOV 54 kb)

Supplementary Figure 9

Movements of single Dam1 signals on a microtubule versus Dam1 signal stuck to the coverslip surface. (MOV 424 kb)

Supplementary Figure 1

Sketch of the bead experiment and fluorescence micrograph of the bead experiment. (PDF 64 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Westermann, S., Wang, HW., Avila-Sakar, A. et al. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440, 565–569 (2006). https://doi.org/10.1038/nature04409

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04409

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing