Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Laser acceleration of quasi-monoenergetic MeV ion beams

Abstract

Acceleration of particles by intense laser–plasma interactions represents a rapidly evolving field of interest, as highlighted by the recent demonstration1,2,3,4 of laser-driven relativistic beams of monoenergetic electrons. Ultrahigh-intensity lasers can produce accelerating fields of 10 TV m-1 (1 TV = 1012 V), surpassing those in conventional accelerators by six orders of magnitude. Laser-driven ions with energies of several MeV per nucleon have also been produced5,6,7,8,9. Such ion beams exhibit unprecedented characteristics—short pulse lengths, high currents and low transverse emittance10—but their exponential energy spectra have almost 100% energy spread. This large energy spread, which is a consequence of the experimental conditions used to date, remains the biggest impediment to the wider use of this technology. Here we report the production of quasi-monoenergetic laser-driven C5+ ions with a vastly reduced energy spread of 17%. The ions have a mean energy of 3 MeV per nucleon (full-width at half-maximum 0.5 MeV per nucleon) and a longitudinal emittance of less than 2 × 10-6 eV s for pulse durations shorter than 1 ps. Such laser-driven, high-current, quasi-monoenergetic ion sources may enable significant advances in the development of compact MeV ion accelerators11, new diagnostics12,13, medical physics14, inertial confinement fusion and fast ignition15,16,17.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: Monoenergetic carbon ions from a 20 µm palladium substrate.
Figure 3: Changing the thickness of the carbon source layer leads to a change in the energy spectrum in the BILBO simulations.

References

  1. Katsouleas, T. Accelerator physics: Electrons hang ten on laser wake. Nature 431, 515–516 (2004)

    Article  ADS  CAS  Google Scholar 

  2. Faure, J. et al. A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Mangles, S. et al. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535–538 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Geddes, C. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Hatchett, S. et al. Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 5, 2076–2082 (2000)

    Article  ADS  Google Scholar 

  6. Hegelich, M. et al. MeV ion jets from short-pulse-laser interaction with thin foils. Phys. Rev. Lett. 89, 085002 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Roth, M. et al. Energetic ions generated by laser pulses: A detailed study on target properties. Phys. Rev. Spec. Topic Accelerators Beams 5, 061002 (2002)

    Article  Google Scholar 

  8. Snavely, R. et al. Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945–2948 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Maksimchuk, A., Gu, S., Flippo, K., Umstadter, D. & Bychenkov, V. Yu. Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84, 4108–4111 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Cowan, T. et al. Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Habs, D., Pretzler, G., Pukhov, A. & Meyer-ter-Vehn, J. Laser acceleration of electrons and ions and intense secondary particle generation. Prog. Part. Nucl. Phys. 46, 375–377 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Cobble, J. A., Johnson, R. P., Cowan, T. E., Renard-Le Galloudec, N. & Allen, M. High resolution laser-driven proton radiography. J. Appl. Phys. 92, 1775–1779 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Borghesi, M. et al. Proton imaging: a diagnostic for inertial confinement fusion/fast ignitor studies. Plasma Phys. Control Fusion 43, A267–A276 (2001)

    Article  CAS  Google Scholar 

  14. Ledingham, K. et al. High power laser production of short-lived isotopes for positron emission tomography. J. Phys. D 37, 2341–2345 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Kodama, R. et al. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412, 798–802 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Roth, M. et al. Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436–439 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Temporal, M., Honrubia, J. J. & Atzeni, S. Numerical study of fast ignition of ablatively imploded deuterium–tritium fusion capsules by ultra-intense proton beams. Phys. Plasmas 9, 3098–3107 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Wilks, S. et al. Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542–549 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Atzeni, S. & Meyer-ter-Vehn, J. The Physics of Inertial Confinement Fusion (Oxford Univ. Press, Oxford, 2004)

    Book  Google Scholar 

  20. Hegelich, M. et al. Spectral properties of laser-accelerated mid-Z MeV/u ion beams. Phys. Plasmas 12, 056314 (2005)

    Article  ADS  Google Scholar 

  21. Patel, P. et al. Isochoric heating of solid-density matter with an ultrafast proton beam. Phys. Rev. Lett. 91, 125004 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Gitomer, S. J. et al. Fast ions and hot electrons in the laser-plasma interaction. Phys. Fluids 29, 2679–2688 (1986)

    Article  ADS  CAS  Google Scholar 

  23. Esirkepov, T. Zh. et al. Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. Phys. Rev. Lett. 89, 175003 (2002)

    Article  ADS  Google Scholar 

  24. Hamilton, J. C. & Blakeley, J. M. Carbon segregation to single crystal surfaces of Pt, Pd and Co. Surf. Sci. 91, 199–217 (1980)

    Article  ADS  CAS  Google Scholar 

  25. Ramsier, R. D., Lee, K.-W. & Yates, J. T. Jr A sensitive method for measuring adsorbed carbon on palladium surfaces: Titration by NO. J. Vac. Sci. Technol. 13, 188–194 (1995)

    Article  ADS  CAS  Google Scholar 

  26. Hein, J. et al. Diode-pumped chirped pulse amplification to the joule level. Appl. Phys. B 79, 419–422 (2004)

    Article  CAS  Google Scholar 

  27. Mourou, G. A. & Umstadter, D. Extreme light. Sci. Am. 286, 80–86 (2002)

    Article  ADS  Google Scholar 

  28. Thomson, J. J. Rays of positive electricity. Phil. Mag. 21, 225–249 (1911)

    Article  CAS  Google Scholar 

  29. Rusch, G., Winkel, E., Noll, A. & Heinrich, W. The Siegen automatic measuring system for track detectors: New developments. Nucl. Tracks Radiat. Meas. 19, 261–265 (1991)

    Article  CAS  Google Scholar 

  30. Augst, S., Meyerhofer, D. D., Strickland, D. & Chint, S. L. Laser ionization of noble gases by Coulomb-barrier suppression. J. Opt. Soc. Am. B 8, 858–867 (1991)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the expert support of the Trident laser team, especially R. Johnson, T. Ortiz and R. Gonzales, and the target fabrication support from LANL group MST-7, particularly R. Perea. This work was supported by the LANL Laboratory Directed Research & Development (LDRD) programme. One of the authors (H.R.) was supported by DOE/NNSA-UNR and another (J.S.) by DFG and BMBF. Author Contributions B.M.H. conceived the experiment, B.M.H., J.C., S.L. and J.C.F. executed the experiment, B.M.H., J.S., K.F. and J.C.F. analysed the data, H.R., B.J.A. and B.M.H. did the theory, M.P. and R.K.S. helped with the material science part and palladium surface chemistry, and B.M.H., B.J.A. and J.C.F. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Hegelich.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Movie

Schematic of laser ion acceleration (MOV 4028 kb)

Supplementary Figure 1

Schematic of monoenergetic laser ion acceleration (PDF 3668 kb)

Supplementary Figure 2

Photograph of an ion acceleration experiment (PDF 237 kb)

Supplementary Figure 3

Analysis of a W-target (PDF 2264 kb)

Supplementary Figure and Movie Legends

Text to accompany the above Supplementary Figures and Supplementary Movie. (DOC 30 kb)

Supplementary Notes

Additional notes on this study. (DOC 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hegelich, B., Albright, B., Cobble, J. et al. Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441–444 (2006). https://doi.org/10.1038/nature04400

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04400

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing