Review Article | Published:

Role of cholesterol and lipid organization in disease

Nature volume 438, pages 612621 (01 December 2005) | Download Citation

Subjects

Abstract

Membrane lipids are essential for biological functions ranging from membrane trafficking to signal transduction. The composition of lipid membranes influences their organization and properties, so it is not surprising that disorders in lipid metabolism and transport have a role in human disease. Significant recent progress has enhanced our understanding of the molecular and cellular basis of lipid-associated disorders such as Tangier disease, Niemann–Pick disease type C and atherosclerosis. These insights have also led to improved understanding of normal physiology.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta 1666, 62–87 (2004).

  2. 2.

    & Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295 (2004).

  3. 3.

    & Membrane domains. Annu. Rev. Cell Dev. Biol. 20, 839–866 (2004).

  4. 4.

    et al. Lipid segregation and IgE receptor signaling: A decade of progress. Biochim. Biophys. Acta 10.1016/j.bbamcr.2005.06.007 (2005).

  5. 5.

    & Molecular medicine. The cholesterol quartet. Science 292, 1310–1312 (2001).

  6. 6.

    & Über experimentelle cholesterinsteatose und ihre bedeutung für die einiger pathologischer prozesse. Zentralbl. Allg. Pathol. 24, 1–9 (1913).

  7. 7.

    Cholesterol, statins and dementia. Curr. Opin. Lipidol. 15, 667–672 (2004).

  8. 8.

    & Functional rafts in cell membranes. Nature 387, 569–572 (1997).

  9. 9.

    Lipid rafts: elusive or illusive? Cell 115, 377–388 (2003).

  10. 10.

    , & How proteins move lipids and lipids move proteins. Nature Rev. Mol. Cell Biol. 2, 504–513 (2001).

  11. 11.

    , , , & Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. J. Biol. Chem. 273, 1150–1157 (1998).

  12. 12.

    Membrane targeting of lipid modified signal transduction proteins. Subcell. Biochem. 37, 217–232 (2004).

  13. 13.

    , & Partitioning of lipidated peptide sequences into liquid-ordered lipid domains in model and biological membranes. Biochemistry 40, 13031–13040 (2001).

  14. 14.

    , , , & Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J. Biol. Chem. 274, 3910–3917 (1999).

  15. 15.

    & Cholesterol and the Golgi apparatus. Science 261, 1280–1281 (1993).

  16. 16.

    , , , & Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc. Natl Acad. Sci. USA 101, 4083–4038 (2004).

  17. 17.

    et al. Membrane lipid organization is critical for human neutrophil polarization. J. Biol. Chem. 278, 10831–10841 (2003).

  18. 18.

    et al. Intramembrane aspartic acid in SCAP protein governs cholesterol-induced conformational change. Proc. Natl Acad. Sci. USA 102, 3242–3247 (2005).

  19. 19.

    et al. Vesicular and non-vesicular sterol transport in living cells. The endocytic recycling compartment is a major sterol storage organelle. J. Biol. Chem. 277, 609–617 (2002).

  20. 20.

    & Intracellular cholesterol transport. J. Clin. Invest. 110, 891–898 (2002).

  21. 21.

    & Macrophage cholesterol transport: a critical player in foam cell formation. Ann. Med. 35, 146–155 (2003).

  22. 22.

    & Intracellular cholesterol transport. Arterioscler. Thromb. Vasc. Biol. 24, 1150–1160 (2004).

  23. 23.

    , , , & START domain proteins and the intracellular trafficking of cholesterol in steroidogenic cells. Mol. Cell Endocrinol. 202, 59–65 (2003).

  24. 24.

    , , & Direct observation of rapid internalization and intracellular transport of sterol by macrophage foam cells. Traffic 6, 396–412 (2005).

  25. 25.

    et al. Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc. Natl Acad. Sci. USA 101, 5886–5891 (2004).

  26. 26.

    et al. Niemann–Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277, 228–231 (1997).

  27. 27.

    Intracellular cholesterol trafficking: role of the NPC1 protein. Biochim Biophys Acta 1486, 171–183 (2000).

  28. 28.

    & Lipid and cholesterol trafficking in NPC. Biochim. Biophys. Acta 1685, 28–37 (2004).

  29. 29.

    , & Acyl-coenzyme A:cholesterol acyltransferase. Annu. Rev. Biochem. 66, 613–638 (1997).

  30. 30.

    Hormone-sensitive lipase—new roles for an old enzyme. Biochem. J. 379, 11–22 (2004).

  31. 31.

    Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J. Clin. Invest. 110, 905–911 (2002).

  32. 32.

    et al. Cholesterol is superior to 7-ketocholesterol or 7 alpha-hydroxycholesterol as an allosteric activator for acyl-coenzyme A:cholesterol acyltransferase 1. J. Biol. Chem. 278, 11642–11647 (2003).

  33. 33.

    , & How cholesterol homeostasis is regulated by plasma membrane cholesterol in excess of phospholipids. Proc. Natl Acad. Sci. USA 101, 11664–11667 (2004).

  34. 34.

    & A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc. Natl Acad. Sci. USA 96, 11041–11048 (1999).

  35. 35.

    , & Regulation and mechanisms of macrophage cholesterol efflux. J. Clin. Invest. 110, 899–904 (2002).

  36. 36.

    , & Function of prokaryotic and eukaryotic ABC proteins in lipid transport. Biochim. Biophys. Acta 1733, 29–52 (2005).

  37. 37.

    & Cellular cholesterol efflux. Biochim. Biophys. Acta 1533, 175–189 (2001).

  38. 38.

    et al. Stearoyl-CoA desaturase inhibits ATP-binding cassette transporter A1-mediated cholesterol efflux and modulates membrane domain structure. J. Biol. Chem. 278, 5813–5820 (2003).

  39. 39.

    & Regulation and mechanisms of ATP-binding cassette transporter A1-mediated cellular cholesterol efflux. Arterioscler. Thromb. Vasc. Biol. 23, 1178–1184 (2003).

  40. 40.

    Oxysterols: modulators of cholesterol metabolism and other processes. Physiol. Rev. 80, 361–554 (2000).

  41. 41.

    et al. Retinoic acid receptor-mediated induction of ABCA1 in macrophages. Mol. Cell Biol. 23, 7756–7766 (2003).

  42. 42.

    , , & Nuclear receptors and lipid physiology: opening the X-files. Science 294, 1866–1870 (2001).

  43. 43.

    ATP-binding cassette transporter A1 and cholesterol trafficking. Curr. Opin. Lipidol. 13, 373–381 (2002).

  44. 44.

    , & SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125–1131 (2002).

  45. 45.

    & Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu. Rev. Nutr. 25, 317–340 (2005).

  46. 46.

    & Principles of lysosomal membrane digestion-stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu. Rev. Cell Dev. Biol. 21, 81–103 (2004).

  47. 47.

    et al. Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nature Cell Biol. 1, 113–118 (1999).

  48. 48.

    , , & The pathophysiology and mechanisms of NP-C disease. Biochim. Biophys. Acta 1685, 83–87 (2004).

  49. 49.

    , , & Structure of a cholesterol-binding protein deficient in Niemann–Pick type C2 disease. Proc. Natl Acad. Sci. USA 100, 2512–2517 (2003).

  50. 50.

    Endocytic trafficking of glycosphingolipids in sphingolipid storage diseases. Phil. Trans. R. Soc. Lond. B 358, 885–891 (2003).

  51. 51.

    , & ATP-binding cassette (ABC) transporters in human metabolism and diseases. Physiol. Res. 53, 235–243 (2004).

  52. 52.

    & The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 15, 551–561 (1995).

  53. 53.

    Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

  54. 54.

    , , , & Evidence for a role of phospholipid oxidation products in atherogenesis. Trends Cardiovasc. Med. 11, 142–147 (2001).

  55. 55.

    & Atherosclerosis. The road ahead. Cell 104, 503–516 (2001).

  56. 56.

    & Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu. Rev. Biochem. 52, 223–261 (1983).

  57. 57.

    et al. Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein. J. Biol. Chem. 280, 2352–2360 (2005).

  58. 58.

    et al. Unique cellular events occurring during the initial interaction of macrophages with matrix-retained or methylated aggregated low density lipoprotein (LDL). Prolonged cell-surface contact during which LDL-cholesteryl ester hydrolysis exceeds LDL protein degradation. J. Biol. Chem. 274, 32112–32121 (1999).

  59. 59.

    et al. The uptake and degradation of matrix-bound lipoproteins by macrophages require an intact actin cytoskeleton, Rho family GTPases, and myosin ATPase activity. J. Biol. Chem. 276, 37649–37658 (2001).

  60. 60.

    , , , & Elevated plasma membrane cholesterol content alters macrophage signaling and function. Arterioscler. Thromb. Vasc. Biol (in the press).

  61. 61.

    The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am. J. Pathol. 103, 181–190 (1981).

  62. 62.

    Nonoxidative modifications of lipoproteins in atherogenesis. Annu. Rev. Nutr. 19, 123–139 (1999).

  63. 63.

    et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386, 292–296 (1997).

  64. 64.

    , & CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin. Invest. 108, 785–791 (2001).

  65. 65.

    et al. Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J. Clin. Invest. 115, 2192–2201 (2005).

  66. 66.

    & Oxidation, lipoproteins, and atherosclerosis: which is wrong, the antioxidants or the theory? Curr. Opin. Clin. Nutr. Metab. Care 8, 139–146 (2005).

  67. 67.

    , , & Remnant lipoproteins and atherosclerosis. Curr. Atheroscler. Rep. 7, 140–147 (2005).

  68. 68.

    et al. A role for the apoptosis inhibitory factor AIM/Spa/Api6 in atherosclerosis development. Cell Metabolism 1, 201–213 (2005).

  69. 69.

    & The role of macrophages in atherosclerosis. Curr. Opin. Lipidol. 4, 355–363 (1993).

  70. 70.

    Clinical practice. Chronic stable angina. N. Engl. J. Med. 352, 2524–2533 (2005).

  71. 71.

    & The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach. Cardiovasc. Pathol. 13, 125–138 (2004).

  72. 72.

    Insights into the molecular mechanisms of plaque rupture and thrombosis. Indian Heart J. 57, 21–30 (2005).

  73. 73.

    , , & Evolving concepts in the triad of atherosclerosis, inflammation and thrombosis. J. Thromb. Thrombolysis 17, 35–44 (2004).

  74. 74.

    , , & Vulnerable plaque: the pathology of unstable coronary lesions. J. Interv. Cardiol. 15, 439–446 (2002).

  75. 75.

    et al. Macrophages and atherosclerotic plaque stability. Curr. Opin. Lipidol. 7, 330–335 (1996).

  76. 76.

    & Progression of atheroma: a struggle between death and procreation. Arterioscler. Thromb. Vasc. Biol. 22, 1370–1380 (2002).

  77. 77.

    Apoptosis and plaque destabilization in atherosclerosis: the role of macrophage apoptosis induced by cholesterol. Cell Death Differ. 11 (Suppl. 1), S12–S16 (2004).

  78. 78.

    , , , & Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 25, 1256–1261 (2005).

  79. 79.

    Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis. The importance of lesion stage and phagocytic efficiency. Arterioscler. Thromb. Vasc. Biol. 25, 2255–2264 (2005).

  80. 80.

    Apoptosis in the atherosclerotic plaque: quantitative and qualitative aspects. Arterioscler. Thromb. Vasc. Biol. 18, 1519–1522 (1998).

  81. 81.

    , & Role of caspases in death and survival of the plaque macrophage. Arterioscler. Thromb. Vasc. Biol. 25, 895–903 (2005).

  82. 82.

    et al. Enrichment of endoplasmic reticulum with cholesterol inhibits sarcoplasmic-endoplasmic reticulum calcium ATPase-2b activity in parallel with increased order of membrane lipids: implications for depletion of endoplasmic reticulum calcium stores and apoptosis in cholesterol-loaded macrophages. J. Biol. Chem. 279, 37030–37039 (2004).

  83. 83.

    et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nature Cell Biol. 5, 781–792 (2003).

  84. 84.

    Orchestrating the unfolded protein response in health and disease. J. Clin. Invest. 110, 1389–1398 (2002).

  85. 85.

    et al. Niemann–Pick C heterozygosity confers resistance to lesional necrosis and macrophage apoptosis in murine atherosclerosis. Proc. Natl Acad. Sci. USA 100, 10423–10428 (2003).

  86. 86.

    , , & Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation 111, 1814–1821 (2005).

  87. 87.

    et al. Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-α and interleukin-6: Model of NK-κB- and Map kinase-dependent inflammation in advanced atherosclerosis. J. Biol. Chem. 280, 21763–21772 (2005).

  88. 88.

    Fluorescence probes in metastatic B16 melanoma membranes. Biochim. Biophys. Acta 776, 299–312 (1984).

  89. 89.

    & Studies of the isoprenoid-mediated inhibition of mevalonate synthesis applied to cancer chemotherapy and chemoprevention. Exp. Biol. Med. 229, 567–585 (2004).

  90. 90.

    & Update on statins: 2003. Circulation 110, 886–892 (2004).

  91. 91.

    et al. Neuronal membrane cholesterol loss enhances amyloid peptide generation. J. Cell Biol. 167, 953–960 (2004).

  92. 92.

    & Insolubility of lipids in Triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim. Biophys. Acta 1508, 182–195 (2000).

  93. 93.

    & A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys. J. 76, 2142–2157 (1999).

  94. 94.

    & Condensed complexes of cholesterol and phospholipids. Biochim. Biophys. Acta 1610, 159–173 (2003).

  95. 95.

    & Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164, 103–114 (1998).

  96. 96.

    & Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys. J. 80, 2775–2788 (2001).

  97. 97.

    & Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J. Biol. Chem. 279, 9997–10004 (2004).

  98. 98.

    & Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers. Biophys. J. 84, 367–378 (2003).

  99. 99.

    et al. Expression and regulation of multiple murine ATP-binding cassette transporter G1 mRNAs/isoforms that stimulate cellular cholesterol efflux to high density lipoprotein. J. Biol. Chem. 279, 45980–45989 (2004).

  100. 100.

    , , , & ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc. Natl Acad. Sci. USA 101, 9774–9779 (2004).

Download references

Author information

Affiliations

  1. Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA

    • Frederick R. Maxfield
  2. Departments of Medicine, Cell Biology, and Physiology & Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY, USA.

    • Ira Tabas

Authors

  1. Search for Frederick R. Maxfield in:

  2. Search for Ira Tabas in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Frederick R. Maxfield.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nature04399

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing