Membrane curvature and mechanisms of dynamic cell membrane remodelling

Abstract

Membrane curvature is no longer seen as a passive consequence of cellular activity but an active means to create membrane domains and to organize centres for membrane trafficking. Curvature can be dynamically modulated by changes in lipid composition, the oligomerization of curvature scaffolding proteins and the reversible insertion of protein regions that act like wedges in membranes. There is an interplay between curvature-generating and curvature-sensing proteins during vesicle budding. This is seen during vesicle budding and in the formation of microenvironments. On a larger scale, membrane curvature is a prime player in growth, division and movement.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Local differences in membrane curvature are hallmarks of cellular membranes.
Figure 2: Clathrin-coated vesicle budding where yolk protein is being incorporated into vesicles in oocytes.
Figure 3: Mechanisms of membrane deformation.
Figure 4: Coincidence detection.

References

  1. 1

    Rothman, J. E. & Orci, L. Budding vesicles in living cells. Scient. Am. 274, 70–75 (1996).

    CAS  Google Scholar 

  2. 2

    Sciaky, N. et al. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J. Cell Biol. 139, 1137–1155 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Heuser, J. Three-dimensional visualization of coated vesicle formation in fibroblasts. J. Cell Biol. 84, 560–583 (1980).

    CAS  PubMed  Google Scholar 

  4. 4

    Bright, N. A., Gratian, M. J. & Luzio, J. P. Endocytic delivery to lysosomes mediated by concurrent fusion and kissing events in living cells. Curr. Biol. 15, 360–365 (2005).

    CAS  PubMed  Google Scholar 

  5. 5

    Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972).

    ADS  CAS  PubMed  Google Scholar 

  6. 6

    Kusumi, A. et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378 (2005).

    CAS  PubMed  Google Scholar 

  7. 7

    Stowell, M. H., Marks, B., Wigge, P. & McMahon, H. T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biol. 1, 27–32 (1999).

    CAS  PubMed  Google Scholar 

  8. 8

    Baumgart, T., Hess, S. T. & Webb, W. W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425, 821–824 (2003).

    ADS  CAS  PubMed  Google Scholar 

  9. 9

    Bacia, K., Schwille, P. & Kurzchalia, T. Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc. Natl Acad. Sci. USA 102, 3272–3277 (2005).

    ADS  CAS  PubMed  Google Scholar 

  10. 10

    Kooijman, E. E. et al. Spontaneous curvature of phosphatidic acid and lysophosphatidic acid. Biochemistry 44, 2097–2102 (2005).

    CAS  PubMed  Google Scholar 

  11. 11

    Brown, W. J., Chambers, K. & Doody, A. Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic 4, 214–221 (2003).

    CAS  PubMed  Google Scholar 

  12. 12

    Shemesh, T., Luini, A., Malhotra, V., Burger, K. N. & Kozlov, M. M. Prefission constriction of Golgi tubular carriers driven by local lipid metabolism: a theoretical model. Biophys. J. 85, 3813–3827 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Farge, E., Ojcius, D. M., Subtil, A. & Dautry-Varsat, A. Enhancement of endocytosis due to aminophospholipid transport across the plasma membrane of living cells. Am. J. Physiol. 276, C725–C733 (1999).

    CAS  PubMed  Google Scholar 

  14. 14

    Hua, Z. & Graham, T. R. Requirement for neo1p in retrograde transport from the Golgi complex to the endoplasmic reticulum. Mol. Biol. Cell 14, 4971–4983 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Hammond, K., Reboiras, M. D., Lyle, I. G. & Jones, M. N. Characterisation of phosphatidylcholine/phosphatidylinositol sonicated vesicles. Effects of phospholipid composition on vesicle size. Biochim. Biophys. Acta 774, 19–25 (1984).

    CAS  PubMed  Google Scholar 

  16. 16

    Ford, M. G. et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291, 1051–1055 (2001).

    ADS  CAS  PubMed  Google Scholar 

  17. 17

    Ford, M. G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).

    ADS  CAS  PubMed  Google Scholar 

  18. 18

    Kinuta, M. et al. Phosphatidylinositol 4,5-bisphosphate stimulates vesicle formation from liposomes by brain cytosol. Proc. Natl Acad. Sci. USA 99, 2842–2847 (2002).

    ADS  CAS  PubMed  Google Scholar 

  19. 19

    Wenk, M. R. & De Camilli, P. Protein–lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc. Natl Acad. Sci. USA 101, 8262–8269 (2004).

    ADS  CAS  PubMed  Google Scholar 

  20. 20

    Honing, S. et al. Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol. Cell 18, 519–531 (2005).

    PubMed  Google Scholar 

  21. 21

    Fernandez-Borja, M. et al. Multivesicular body morphogenesis requires phosphatidyl-inositol 3-kinase activity. Curr. Biol. 9, 55–58 (1999).

    CAS  PubMed  Google Scholar 

  22. 22

    Gruenberg, J. & Stenmark, H. The biogenesis of multivesicular endosomes. Nature Rev. Mol. Cell Biol. 5, 317–323 (2004).

    CAS  Google Scholar 

  23. 23

    Odorizzi, G., Babst, M. & Emr, S. D. Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95, 847–858 (1998).

    CAS  PubMed  Google Scholar 

  24. 24

    Roux, A. et al. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J. 24, 1537–1545 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Cremona, O. et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99, 179–188 (1999).

    CAS  PubMed  Google Scholar 

  26. 26

    Fertuck, H. C. & Salpeter, M. M. Localization of acetylcholine receptor by 125I-labeled alpha-bungarotoxin binding at mouse motor endplates. Proc. Natl Acad. Sci. USA 71, 1376–1378 (1974).

    ADS  CAS  PubMed  Google Scholar 

  27. 27

    Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4Å resolution. J. Mol. Biol. 346, 967–989 (2005).

    CAS  Google Scholar 

  28. 28

    Mackinnon, R. Structural biology. Voltage sensor meets lipid membrane. Science 306, 1304–1305 (2004).

    CAS  PubMed  Google Scholar 

  29. 29

    Boudin, H. et al. Presynaptic clustering of mGluR7a requires the PICK1 PDZ domain binding site. Neuron 28, 485–497 (2000).

    CAS  PubMed  Google Scholar 

  30. 30

    Eckler, S. A., Kuehn, R. & Gautam, M. Deletion of N-terminal rapsyn domains disrupts clustering and has dominant negative effects on clustering of full-length rapsyn. Neuroscience 131, 661–670 (2005).

    CAS  PubMed  Google Scholar 

  31. 31

    Kirchhausen, T., Boll, W., van Oijen, A. & Ehrlich, M. Single-molecule live-cell imaging of clathrin-based endocytosis. Biochem. Soc. Symp. 72, 71–76 (2005).

    CAS  Google Scholar 

  32. 32

    Petrou, S. et al. Direct effects of fatty acids and other charged lipids on ion channel activity in smooth muscle cells. Prostaglandins Leukot. Essent. Fatty Acids 52, 173–178 (1995).

    CAS  PubMed  Google Scholar 

  33. 33

    Casado, M. & Ascher, P. Opposite modulation of NMDA receptors by lysophospholipids and arachidonic acid: common features with mechanosensitivity. J. Physiol. 513, 317–330 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Fuster, D., Moe, O. W. & Hilgemann, D. W. Lipid- and mechanosensitivities of sodium/hydrogen exchangers analyzed by electrical methods. Proc. Natl Acad. Sci. USA 101, 10482–10487 (2004).

    ADS  CAS  PubMed  Google Scholar 

  35. 35

    Ledesma, M. D. & Dotti, C. G. Membrane and cytoskeleton dynamics during axonal elongation and stabilization. Int. Rev. Cytol. 227, 183–219 (2003).

    CAS  PubMed  Google Scholar 

  36. 36

    Sheetz, M. P. Cell control by membrane-cytoskeleton adhesion. Nature Rev. Mol. Cell Biol. 2, 392–396 (2001).

    CAS  Google Scholar 

  37. 37

    Raucher, D. & Sheetz, M. P. Cell spreading and lamellipodial extension rate is regulated by membrane tension. J. Cell Biol. 148, 127–136 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Dai, J., Ting-Beall, H. P. & Sheetz, M. P. The secretion-coupled endocytosis correlates with membrane tension changes in RBL 2H3 cells. J. Gen. Physiol. 110, 1–10 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Heidelberger, R., Zhou, Z. Y. & Matthews, G. Multiple components of membrane retrieval in synaptic terminals revealed by changes in hydrostatic pressure. J. Neurophysiol. 88, 2509–2517 (2002).

    PubMed  Google Scholar 

  40. 40

    Raucher, D. & Sheetz, M. P. Membrane expansion increases endocytosis rate during mitosis. J. Cell Biol. 144, 497–506 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Bettache, N. et al. Mechanical constraint imposed on plasma membrane through transverse phospholipid imbalance induces reversible actin polymerization via phosphoinositide 3-kinase activation. J. Cell Sci. 116, 2277–2284 (2003).

    CAS  PubMed  Google Scholar 

  42. 42

    Merrifield, C. J., Perrais, D. & Zenisek, D. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121, 593–606 (2005).

    CAS  PubMed  Google Scholar 

  43. 43

    Yarar, D., Waterman-Storer, C. M. & Schmid, S. L. A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol. Biol. Cell 16, 964–975 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Shupliakov, O. et al. Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proc. Natl Acad. Sci. USA 99, 14476–14481 (2002).

    ADS  CAS  PubMed  Google Scholar 

  45. 45

    Engqvist-Goldstein, A. E. et al. RNAi-mediated Hip1R silencing results in stable association between the endocytic machinery and the actin assembly machinery. Mol. Biol. Cell 15, 1666–1679 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Qualmann, B. & Kelly, R. B. Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J. Cell Biol. 148, 1047–1062 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Rodriguez-Boulan, E., Kreitzer, G. & Musch, A. Organization of vesicular trafficking in epithelia. Nature Rev. Mol. Cell Biol. 6, 233–247 (2005).

    CAS  Google Scholar 

  48. 48

    Vale, R. D. & Hotani, H. Formation of membrane networks in vitro by kinesin-driven microtubule movement. J. Cell Biol. 107, 2233–2241 (1988).

    CAS  PubMed  Google Scholar 

  49. 49

    Dabora, S. L. & Sheetz, M. P. The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell 54, 27–35 (1988).

    CAS  PubMed  Google Scholar 

  50. 50

    Buss, F., Luzio, J. P. & Kendrick-Jones, J. Myosin VI, an actin motor for membrane traffic and cell migration. Traffic 3, 851–858 (2002).

    CAS  PubMed  Google Scholar 

  51. 51

    Bretscher, M. S. Getting membrane flow and the cytoskeleton to cooperate in moving cells. Cell 87, 601–606 (1996).

    CAS  PubMed  Google Scholar 

  52. 52

    Allan, V. & Vale, R. Movement of membrane tubules along microtubules in vitro: evidence for specialised sites of motor attachment. J. Cell Sci. 107, 1885–1897 (1994).

    CAS  PubMed  Google Scholar 

  53. 53

    Merrifield, C. J. Seeing is believing: imaging actin dynamics at single sites of endocytosis. Trends Cell Biol. 14, 352–358 (2004).

    CAS  PubMed  Google Scholar 

  54. 54

    Zakharenko, S. & Popov, S. Dynamics of axonal microtubules regulate the topology of new membrane insertion into the growing neurites. J. Cell Biol. 143, 1077–1086 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004).

    ADS  CAS  PubMed  Google Scholar 

  56. 56

    Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190–192 (1995).

    ADS  CAS  PubMed  Google Scholar 

  57. 57

    Marks, B. et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 410, 231–235 (2001).

    ADS  CAS  PubMed  Google Scholar 

  58. 58

    Praefcke, G. J. & McMahon, H. T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nature Rev. Mol. Cell Biol. 5, 133–147 (2004).

    CAS  Google Scholar 

  59. 59

    Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998).

    CAS  PubMed  Google Scholar 

  60. 60

    von Schwedler, U. K. et al. The protein network of HIV budding. Cell 114, 701–713 (2003).

    CAS  PubMed  Google Scholar 

  61. 61

    Antonny, B., Gounon, P., Schekman, R. & Orci, L. Self-assembly of minimal COPII cages. EMBO Rep. 4, 419–424 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Nossal, R. Energetics of clathrin basket assembly. Traffic 2, 138–147 (2001).

    CAS  PubMed  Google Scholar 

  63. 63

    Razani, B. & Lisanti, M. P. Caveolins and caveolae: molecular and functional relationships. Exp. Cell Res. 271, 36–44 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Zimmerberg, J. & McLaughlin, S. Membrane curvature: how BAR domains bend bilayers. Curr. Biol. 14, R250–R252 (2004).

    CAS  PubMed  Google Scholar 

  65. 65

    Takei, K., Slepnev, V. I., Haucke, V. & De Camilli, P. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nature Cell Biol. 1, 33–39 (1999).

    CAS  PubMed  Google Scholar 

  66. 66

    Farsad, K. et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155, 193–200 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Razzaq, A. et al. Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes Dev. 15, 2967–2979 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Richnau, N., Fransson, A., Farsad, K. & Aspenstrom, P. RICH-1 has a BIN/Amphiphysin/Rvsp domain responsible for binding to membrane lipids and tubulation of liposomes. Biochem. Biophys. Res. Commun. 320, 1034–1042 (2004).

    CAS  PubMed  Google Scholar 

  69. 69

    Wigge, P. et al. Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Mol. Biol. Cell 8, 2003–2015 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Carlton, J. et al. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr. Biol. 14, 1791–1800 (2004).

    CAS  PubMed  Google Scholar 

  71. 71

    Orcl, L., Palmer, D. J., Amherdt, M. & Rothman, J. E. Coated vesicle assembly in the Golgi requires only coatomer and ARF proteins from the cytosol. Nature 364, 732–734 (1993).

    ADS  CAS  PubMed  Google Scholar 

  72. 72

    Seaman, M. N., Sowerby, P. J. & Robinson, M. S. Cytosolic and membrane-associated proteins involved in the recruitment of AP-1 adaptors onto the trans-Golgi network. J. Biol. Chem. 271, 25446–25451 (1996).

    CAS  PubMed  Google Scholar 

  73. 73

    Puertollano, R., Randazzo, P. A., Presley, J. F., Hartnell, L. M. & Bonifacino, J. S. The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Cell 105, 93–102 (2001).

    CAS  PubMed  Google Scholar 

  74. 74

    Bi, X., Corpina, R. A. & Goldberg, J. Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature 419, 271–277 (2002).

    ADS  CAS  Google Scholar 

  75. 75

    Mashl, R. J. & Bruinsma, R. F. Spontaneous-curvature theory of clathrin-coated membranes. Biophys. J. 74, 2862–2875 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Kozlov, M. M. Fission of biological membranes: interplay between dynamin and lipids. Traffic 2, 51–65 (2001).

    CAS  PubMed  Google Scholar 

  77. 77

    Bigay, J., Gounon, P., Robineau, S. & Antonny, B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426, 563–566 (2003).

    ADS  CAS  PubMed  Google Scholar 

  78. 78

    Bigay, J., Casella, J. F., Drin, G., Mesmin, B. & Antonny, B. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J. 24, 2244–2253 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Antonny, B., Beraud-Dufour, S., Chardin, P. & Chabre, M. N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry 36, 4675–4684 (1997).

    CAS  PubMed  Google Scholar 

  80. 80

    Kobayashi, T. et al. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 392, 193–197 (1998).

    ADS  CAS  PubMed  Google Scholar 

  81. 81

    Matsuo, H. et al. Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303, 531–534 (2004).

    ADS  CAS  PubMed  Google Scholar 

  82. 82

    Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT.-I. Cell 106, 145–155 (2001).

    CAS  PubMed  Google Scholar 

  83. 83

    Odorizzi, G., Katzmann, D. J., Babst, M., Audhya, A. & Emr, S. D. Bro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae. J. Cell Sci. 116, 1893–1903 (2003).

    CAS  PubMed  Google Scholar 

  84. 84

    Kim, J. et al. Structural basis for endosomal targeting by the bro1 domain. Dev. Cell 8, 937–947 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Ward, D. M. et al. The role of LIP5 and CHMP5 in multivesicular body formation and HIV-1 budding in mammalian cells. J. Biol. Chem. 280, 10548–10555 (2005).

    CAS  PubMed  Google Scholar 

  86. 86

    Praefcke, G. J. et al. Evolving nature of the AP2 alpha-appendage hub during clathrin-coated vesicle endocytosis. EMBO J. 23, 4371–4383 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Perry, M. M. & Gilbert, A. B. Yolk transport in the ovarian follicle of the hen (Gallus domesticus): lipoprotein-like particles at the periphery of the oocyte in the rapid growth phase. J. Cell Sci. 39, 257–272 (1979).

    CAS  PubMed  Google Scholar 

  88. 88

    Gallop, J. L. & McMahon, H. T. BAR domains and membrane curvature: bringing your curves to the BAR. Biochem. Soc. Symp. 72, 223–231 (2005).

    CAS  Google Scholar 

  89. 89

    Jao, C. C., Der-Sarkissian, A., Chen, J. & Langen, R. Structure of membrane-bound alpha-synuclein studied by site-directed spin labeling. Proc. Natl Acad. Sci. USA 101, 8331–8336 (2004).

    ADS  CAS  PubMed  Google Scholar 

  90. 90

    Lee, S. et al. De novo-designed peptide transforms Golgi-specific lipids into Golgi-like nanotubules. J. Biol. Chem. 276, 41224–41228 (2001).

    CAS  PubMed  Google Scholar 

  91. 91

    Stahelin, R. V. et al. Contrasting membrane interaction mechanisms of AP180 N-terminal homology (ANTH) and epsin N-terminal homology (ENTH) domains. J. Biol. Chem. 278, 28993–28999 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

B. Peter provided inspiration for this review, and although he has moved on to better things, his thoughts and contribution were invaluable. He is largely responsible for Fig. 3. We also thank P. Evans and all members of the laboratory for their continuous curvature discussion. J.G. was the recipient of an MRC Predoctoral Fellowship and Karn Fund Postdoctoral Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Harvey T. McMahon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McMahon, H., Gallop, J. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005). https://doi.org/10.1038/nature04396

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing