Letter | Published:

Slowing of the Atlantic meridional overturning circulation at 25° N

Nature volume 438, pages 655657 (01 December 2005) | Download Citation

Subjects

Abstract

The Atlantic meridional overturning circulation carries warm upper waters into far-northern latitudes and returns cold deep waters southward across the Equator1. Its heat transport makes a substantial contribution to the moderate climate of maritime and continental Europe, and any slowdown in the overturning circulation would have profound implications for climate change. A transatlantic section along latitude 25° N has been used as a baseline for estimating the overturning circulation and associated heat transport2,3,4. Here we analyse a new 25° N transatlantic section and compare it with four previous sections taken over the past five decades. The comparison suggests that the Atlantic meridional overturning circulation has slowed by about 30 per cent between 1957 and 2004. Whereas the northward transport in the Gulf Stream across 25° N has remained nearly constant, the slowing is evident both in a 50 per cent larger southward-moving mid-ocean recirculation of thermocline waters, and also in a 50 per cent decrease in the southward transport of lower North Atlantic Deep Water between 3,000 and 5,000 m in depth. In 2004, more of the northward Gulf Stream flow was recirculating back southward in the thermocline within the subtropical gyre, and less was returning southward at depth.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & in Ocean Circulation and Climate (eds Siedler, G., Church, J. & Gould, J.) Ch. 6.2 455–474 (Academic, London, 2001)

  2. 2.

    & Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res. 29, 339–359 (1982)

  3. 3.

    & Two transatlantic sections: meridional circulation and heat flux in the subtropical North Atlantic Ocean. Deep-Sea Res. 32, 619–664 (1985)

  4. 4.

    , & Meridional transport and heat flux variations in the subtropical North Atlantic. Glob. Atmos. Ocean Syst. 6, 269–293 (1998)

  5. 5.

    et al. in Climate Change 2001: The Scientific Basis (ed. Houghton, J. T.) Ch. 9, 525–582 (Cambridge Univ. Press, Cambridge, UK, 2001)

  6. 6.

    & Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim. Change 54, 251–267 (2002)

  7. 7.

    New experiment deploys observing array in N. Atlantic to investigate rapid climate change. Eos 85(8), 78–83 (2004)

  8. 8.

    RRS Discovery Cruise 279 (04 Apr–10 May 2004): A Transatlantic Hydrography Section at 24.5° N Cruise Report 54, 1–199 (Southampton Oceanography Centre, Southampton, 2005)

  9. 9.

    Atlantic Ocean Atlas of Temperature and Salinity Profiles and Data from the International Geophysical Year of 1957–1958. Woods Hole Oceanographic Institution Atlas Series 1, 1–209 (WHOI, Woods Hole, Massachusetts, 1960)

  10. 10.

    , , , & Rising temperatures in the subtropical North Atlantic Ocean over the past 35 years. Nature 369, 48–51 (1994)

  11. 11.

    & Atlantic Ocean baroclinic heat flux at 24 to 26° N. Geophys. Res. Lett. 26, 353–356 (1999)

  12. 12.

    & Sixteen years of Florida Current transport at 27° N. Geophys. Res. Lett. 28, 3179–3182 (2001)

  13. 13.

    , & Deep western boundary current east of Abaco: Mean structure and transport. J. Mar. Res. 63, 35–57 (2005)

  14. 14.

    & The theory of the seasonal variability in the ocean. Deep-Sea Res. 20, 141–177 (1973)

  15. 15.

    & The dynamics of ocean heat transport variability. Rev. Geophys. 39, 385–411 (2001)

  16. 16.

    Transport and heat flux of the Florida Current at 27° N derived from cross-stream voltages and profiling data: theory and observations. Phil. Trans. R. Soc. Lond. A 338, 169–236 (1992)

  17. 17.

    & On the transport of the Florida current. Deep-Sea Res. 15, 679–693 (1968)

  18. 18.

    , & The velocity structure of the Florida Current from the Straits of Florida to Cape Fear. Deep-Sea Res. 16 (suppl.), 225–231 (1969)

  19. 19.

    & Seasonal variability of the Florida Current. J. Mar. Res. 31, 144–167 (1973)

  20. 20.

    , & Florida Current Transport (NOAA/AOML, Miami, Florida, 2005)

  21. 21.

    & The NOC (formerly SOC) Air-Sea Flux Climatology (National Oceanography Centre, Southampton, 2005)

  22. 22.

    NCEP Real-time Marine Data (NOAA/Climate Diagnostics Center, Boulder, Colorado, 2005)

  23. 23.

    , , & Transport of freshwater by the oceans. J. Phys. Oceanogr. 22, 155–162 (1992)

  24. 24.

    , & The mean annual cycle in global ocean wind stress. J. Phys. Oceanogr. 20, 1742–1760 (1990)

  25. 25.

    et al. Transport, potential vorticity, and current/temperature structure across Northwest Providence and Santaren Channels and the Florida Current off Cay Sal Bank. J. Geophys. Res. 100, 8561–8569 (1995)

  26. 26.

    Error budget of inverse box models: The North Atlantic. J. Atmos. Ocean. Technol. 20, 1641–1655 (2003)

  27. 27.

    & Decline of subpolar North Atlantic circulation during the 1990s. Science 304, 555–559 (2004)

  28. 28.

    & The abyss of the Nordic Seas is warming. J. Clim. 12, 3297–3304 (1999)

  29. 29.

    et al. Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature 416, 832–837 (2002)

  30. 30.

    , & Decreasing outflow from the Nordic seas into the Atlantic Ocean through the Faroe Bank channel since 1950. Nature 411, 927–930 (2001)

Download references

Acknowledgements

The 2004 transatlantic hydrographic section along 25° N was supported by the Natural Environment Research Council as part of the Core Strategic Research Programme ‘Ocean Variability and Climate’ at Southampton Oceanography Centre. Analysis of the five sections along 25° N was also supported by NERC as part of the Rapid Programme. Comments on an earlier draft by J. Hirschi, W. Johns, S. Josey, C. Meinen, G. Parrilla, P. Rhines, P. Saunders, J. Toole, P. Vélez and R. Wood led to substantial improvement. Author Contributions All authors contributed equally to this work.

Author information

Affiliations

  1. National Oceanography Centre, Empress Dock, Southampton SO14 3ZH, UK

    • Harry L. Bryden
    • , Hannah R. Longworth
    •  & Stuart A. Cunningham

Authors

  1. Search for Harry L. Bryden in:

  2. Search for Hannah R. Longworth in:

  3. Search for Stuart A. Cunningham in:

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Corresponding author

Correspondence to Harry L. Bryden.

Supplementary information

PDF files

  1. 1.

    Supplmentary Figure 1

    Cumulative mid-ocean geostrophic transport for the 1957, 1981, 1992, 1998 and 2004 hydrographic sections along 25°N.

  2. 2.

    Supplementary Figure 2

    Cumulative mid-ocean geostrophic transport in the upper 1000 m for the 1957, 1981, 1992, 1998 and 2004 hydrographic sections along 25°N.

  3. 3.

    Supplementary Figure 3

    Accumulated meridional transport (Sv) above 1000 m depth as a function of zonal distance from the African coast for each of the 5 sections in 1957, 1981, 1992, 1998 and 2004.

Word documents

  1. 1.

    Supplementary Figure Legends

    Text to accompany the above Supplementary Figures.

  2. 2.

    Supplementary Table 1

    Mid-ocean meridional geostrophic water mass transports (Sv) across 26°N in potential temperature (θ) classes

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature04385

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.