Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The RNA-binding protein FCA is an abscisic acid receptor

A Retraction to this article was published on 11 December 2008

Abstract

The phytohormone abscisic acid (ABA) regulates various physiological processes in plants. The molecular mechanisms by which this is achieved are not fully understood. Genetic approaches have characterized several downstream components of ABA signalling, but a receptor for ABA has remained elusive. Although studies indicate that several ABA response genes encode RNA-binding or RNA-processing proteins, none has been found to be functional in binding ABA. Here we show that FCA, an RNA-binding protein involved in flowering, binds ABA with high affinity in an interaction that is stereospecific and follows receptor kinetics. The interaction between FCA and ABA has molecular effects on downstream events in the autonomous floral pathway and, consequently, on the ability of the plant to undergo transition to flowering. We further show that ABA binding exerts a direct control on the FCA-mediated processing of precursor messenger RNA. Our results indicate that FCA is an ABA receptor involved in RNA metabolism and in controlling flowering time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding of [ 3 H](+ )-ABA to purified recombinant FCA protein.
Figure 2: ABA affects FCA–FY interaction.
Figure 3: ABA affects FCA autoregulation.
Figure 4: ABA affects flowering.
Figure 5: FCA is involved in a distinct ABA response.

Similar content being viewed by others

References

  1. Finkelstein, R. R., Gampala, S. S. L. & Rock, C. D. Abscisic acid signalling in seeds and seedlings. Plant Cell 14, S15–S45 (2002)

    Article  CAS  Google Scholar 

  2. Himmelbach, A., Yang, Y. & Grill, E. Relay and control of abscisic acid signalling. Curr. Opin. Plant Biol. 6, 470–479 (2003)

    Article  CAS  Google Scholar 

  3. Leung, J. & Giraudat, J. Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 199–222 (1998)

    Article  CAS  Google Scholar 

  4. Lu, C. & Fedoroff, N. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12, 2351–2365 (2000)

    Article  CAS  Google Scholar 

  5. Hugouvieux, V., Kwak, J. & Schroeder, J. A mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis . Cell 106, 477–487 (2001)

    Article  CAS  Google Scholar 

  6. Xiong, L. et al. Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis . Dev. Cell 1, 771–781 (2001)

    Article  CAS  Google Scholar 

  7. Kuhn, J. M. & Schroeder, J. I. Impacts of altered RNA metabolism on abscisic acid signalling. Curr. Opin. Plant Biol. 6, 463–469 (2003)

    Article  CAS  Google Scholar 

  8. Sutton, F., Paul, S. S., Wang, X.-Q. & Assmann, S. M. Distinct abscisic acid signalling pathways for modulation of guard cells versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes. Plant Physiol. 124, 223–230 (2000)

    Article  CAS  Google Scholar 

  9. Gusta, L. V., Ewan, B., Reaney, J. T. & Abrams, S. R. The effect of abscisic acid and abscisic acid metabolites on the germination of cress seed. Can. J. Bot. 70, 1550–1555 (1992)

    Article  CAS  Google Scholar 

  10. Hill, R. D. et al. Abscisic acid structure–activity relationships in barley aleurone layers and protoplasts. Plant Physiol. 108, 573–579 (1995)

    Article  CAS  Google Scholar 

  11. Hays, D. B., Rose, P., Abrams, S. R. & Moloney, M. M. Biological activity of optically pure C-1 altered abscisic acid analogs in Brassica napus microspore embryos. J. Plant Growth Reg. 15, 5–11 (1996)

    Article  CAS  Google Scholar 

  12. Razem, F. A., Luo, M., Liu, J.-H., Abrams, S. R. & Hill, R. D. Purification and characterization of a barley aleurone abscisic acid-binding protein. J. Biol. Chem. 279, 9922–9929 (2004)

    Article  CAS  Google Scholar 

  13. Macknight, R. et al. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89, 737–745 (1997)

    Article  CAS  Google Scholar 

  14. Henderson, I. R. & Dean, C. Control of Arabidopsis flowering: the chill before the bloom. Development 131, 3829–3838 (2004)

    Article  CAS  Google Scholar 

  15. Simpson, G. G. The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr. Opin. Plant Biol. 7, 570–574 (2004)

    Article  CAS  Google Scholar 

  16. Michaels, S. D. & Amasino, R. M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11, 949–956 (1999)

    Article  CAS  Google Scholar 

  17. Sheldon, C. C., Rouse, D. T., Finnegan, E. J., Peacock, W. J. & Dennis, E. S. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc. Natl Acad. Sci. USA 97, 3753–3758 (2000)

    Article  CAS  ADS  Google Scholar 

  18. Simpson, G. G., Dijkwel, P. P., Quesada, V., Henderson, I. & Dean, C. FY is an RNA 3′ end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113, 777–787 (2003)

    Article  CAS  Google Scholar 

  19. Macknight, R. et al. Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA . Plant Cell 14, 877–888 (2002)

    Article  CAS  Google Scholar 

  20. Quesada, V., Macknight, R., Dean, C. & Simpson, G. G. Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J. 22, 3142–3152 (2003)

    Article  CAS  Google Scholar 

  21. Wijayanti, L., Fujioka, S., Kobayashi, M. & Sakurai, A. Involvement of abscisic acid and indole-3-acetic acid in the flowering of Pharbitis nil . J. Plant Growth Regul. 16, 115–119 (1997)

    Article  CAS  Google Scholar 

  22. Markarov, A. M. Causes of flowering of long-day potato species under short-day and cold-night conditions. Russ. J. Plant Physiol. 49, 465–469 (2002)

    Article  CAS  Google Scholar 

  23. Su, W. R., Huang, K. L., Shen, R. S. & Chen, W. S. Abscisic acid affects floral initiation in Polianthes tuberose . J. Plant Physiol. 159, 557–559 (2002)

    Article  CAS  Google Scholar 

  24. Finkelstein, R. R & Rock, C. D. in The Arabidopsis Book (eds Somerville, C. R. & Meyerowitz, E. M.) 1–48 (Am. Soc. Plant Biologists, Rockville, MD, 2002)

    Google Scholar 

  25. De Smet, I. et al. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis . Plant J. 33, 543–555 (2003)

    Article  CAS  Google Scholar 

  26. Dharmasiri, N., Dharmasiri, S. & Estelle, M. The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445 (2005)

    Article  CAS  ADS  Google Scholar 

  27. Kepinski, S. & Leyser, O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446–451 (2005)

    Article  CAS  ADS  Google Scholar 

  28. Michaels, S. D. & Amasino, R. M. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13, 935–941 (2001)

    Article  CAS  Google Scholar 

  29. Bastow, R. et al. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427, 164–167 (2004)

    Article  CAS  ADS  Google Scholar 

  30. Sung, S. & Amasino, R. M. Remembering winter: towards a molecular understanding of vernalization. Annu. Rev. Plant Biol. 56, 491–508 (2005)

    Article  CAS  Google Scholar 

  31. Cheng, Y. & Chen, X. Posttranscriptional control of plant development. Curr. Opin. Plant Biol. 7, 20–25 (2004)

    Article  CAS  Google Scholar 

  32. Li, J. et al. Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase. Nature 418, 793–797 (2002)

    Article  CAS  ADS  Google Scholar 

  33. Jefferson, R. A., Kavanagh, T. A. & Bevan, M. W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907 (1987)

    Article  CAS  Google Scholar 

  34. Nyangulu, J. M. et al. An affinity probe for isolation of abscisic-acid proteins. J. Am. Chem. Soc. 127, 1662–1664 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Dean and G. Simpson for clones and advice; M. Galka for an ABA affinity column; and K. Baron for help with microscopy. The financial support of the Natural Sciences and Engineering Council of Canada (to R.D.H.) and Genome Canada (to R.D.H. and S.R.A.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Hill.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1.

Binding of 3H-(+)-ABA to purified recombinant FCA protein. (PDF 10 kb)

Supplementary Figure 2.

FCA protein purified on biotin-tagged (+)-ABA column. (PDF 53 kb)

Supplementary Figure 3.

ABA binding disrupts FCA/FY interaction. (PDF 7 kb)

Supplementary Figure 4.

ABA affects FCA autoregulation. (PDF 15 kb)

Supplementary Figure 5.

ABA delays flowering. (PDF 29 kb)

Supplementary Figure Legends

Text to accompany the above Supplementary Figures. (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razem, F., El-Kereamy, A., Abrams, S. et al. The RNA-binding protein FCA is an abscisic acid receptor. Nature 439, 290–294 (2006). https://doi.org/10.1038/nature04373

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04373

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing