Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stability of hydrous melt at the base of the Earth's upper mantle

Abstract

Seismological observations have revealed the existence of low-velocity and high-attenuation zones above the discontinuity at 410 km depth, at the base of the Earth's upper mantle1,2. It has been suggested that a small amount of melt could be responsible for such anomalies3,4,5. The density of silicate melt under dry conditions has been measured at high pressure4,6,7,8,9,10,11,12,13 and found to be denser than the surrounding solid, thereby allowing the melt to remain at depth. But no experimental investigation of the density of hydrous melt has yet been carried out. Here we present data constraining the density of hydrous basaltic melt under pressure to examine the stability of melt above the 410-km discontinuity. We infer that hydrous magma formed by partial melting above the 410-km discontinuity may indeed be gravitationally stable, thereby supporting the idea that low-velocity or high-attentuation regions just above the mantle transition zone may result from the presence of melt.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pressure versus density diagram summarizing the density measurement of hydrous MORB.
Figure 2: Compression curves of the molar volume of H 2 O (broken line) and the partial molar volume of H 2 O in magma (solid line) at 2,200 °C.
Figure 3: Compression curves of hydrous melts at 1,600 °C and PREM (Preliminary Reference Earth Model)24.

Similar content being viewed by others

References

  1. Revenaugh, J. & Sipkin, S. A. Seismic evidence for silicate melt atop the 410-km mantle discontinuity. Nature 369, 474–476 (1994)

    Article  CAS  ADS  Google Scholar 

  2. Song, T. A., Helmberger, D. V. & Grand, S. P. Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States. Nature 427, 530–533 (2004)

    Article  CAS  ADS  Google Scholar 

  3. Litasov, K. & Ohtani, E. Phase relations and melt compositions in CMAS-pyrolite-H2O system up to 25 GPa. Phys. Earth Planet. Inter. 134, 105–127 (2002)

    Article  CAS  ADS  Google Scholar 

  4. Suzuki, A. & Ohtani, E. Density of peridotite melts at high pressure. Phys. Chem. Miner. 30, 449–456 (2003)

    Article  CAS  ADS  Google Scholar 

  5. Ohtani, E., Litasov, K., Hosoya, T., Kubo, T. & Kondo, T. Water transport into the deep mantle and formation of a hydrous transition zone. Phys. Earth Planet. Inter. 143–144, 255–269 (2004)

    Article  ADS  Google Scholar 

  6. Rigden, S. M., Ahrens, T. J. & Stolper, E. M. Densities of liquid silicates at high pressures. Science 226, 1071–1073 (1984)

    Article  CAS  ADS  Google Scholar 

  7. Suzuki, A., Ohtani, E. & Kato, T. Flotation of diamond in mantle melt at high pressure. Science 269, 216–218 (1995)

    Article  CAS  ADS  Google Scholar 

  8. Ohtani, E. & Maeda, M. Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle. Earth Planet. Sci. Lett. 193, 69–75 (2001)

    Article  CAS  ADS  Google Scholar 

  9. Agee, C. B. & Walker, D. Static compression and olivine flotation in ultrabasic silicate liquid. J. Geophys. Res. 93, 3437–3449 (1988)

    Article  CAS  ADS  Google Scholar 

  10. Agee, C. B. & Walker, D. Olivine flotation in mantle melt. Earth Planet. Sci. Lett. 114, 315–324 (1993)

    Article  CAS  ADS  Google Scholar 

  11. Agee, C. B. Crystal-liquid density inversions in terrestrial and lunar magmas. Phys. Earth Planet. Inter. 107, 63–74 (1998)

    Article  CAS  ADS  Google Scholar 

  12. Ohtani, E., Suzuki, A. & Kato, T. Flotation of olivine in the peridotite melt at high pressure. Proc. Jpn Acad. Ser. B 69, 23–28 (1993)

    Article  CAS  Google Scholar 

  13. Suzuki, A., Ohtani, E. & Kato, T. Density and thermal expansion of a peridotite melt at high pressure. Phys. Earth Planet. Inter. 107, 53–61 (1998)

    Article  CAS  ADS  Google Scholar 

  14. Lange, R. A. & Carmichael, I. S. E. Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: new measurements and derived partial molar properties. Geochim. Cosmochim. Acta 51, 2931–2946 (1987)

    Article  CAS  ADS  Google Scholar 

  15. Ochs, F. A. III & Lange, R. A. The density of hydrous magmatic liquids. Science 283, 1314–1317 (1999)

    Article  CAS  ADS  Google Scholar 

  16. Zouboulis, E. S., Grimsditch, M., Randas, A. K. & Rodriguez, S. Temperature dependence of the elastic moduli of diamond: a Brillouin-scattering study. Phys. Rev. B 57, 2889–2896 (1998)

    Article  CAS  ADS  Google Scholar 

  17. McSkimin, H. J. & Andreatch, P. Jr Elastic moduli of diamond as a function of pressure and temperature. J. Appl. Phys. 43, 2944–2948 (1972)

    Article  CAS  ADS  Google Scholar 

  18. Kawamoto, T. Hydrous phase stability and partial melt chemistry in H2O-saturated KLB-1 peridotite up to the uppermost lower mantle conditions. Phys. Earth Planet. Inter. 143–144, 387–395 (2004)

    Article  ADS  Google Scholar 

  19. Wallace, P. J. Water and partial melting in mantle plumes: inferences from the dissolved H2O concentrations of Hawaiian basaltic magmas. Geophys. Res. Lett. 25, 3639–3642 (1998)

    Article  CAS  ADS  Google Scholar 

  20. Burnham, C. W. & Davis, N. F. The role of H2O in silicate melts I. P-V-T relations in the system NaAlSi3O8-H2O to 10 kilobars and 1000 °C. Am. J. Sci. 270, 54–79 (1971)

    Article  CAS  ADS  Google Scholar 

  21. Ochs, F. A. III & Lange, R. A. The partial molar volume, thermal expansivity, and compressibility of H2O in NaAlSi3O8 liquid: new measurements and an internally consistent model. Contrib. Mineral. Petrol. 129, 155–165 (1997)

    Article  CAS  ADS  Google Scholar 

  22. Vinet, P., Rose, J. H., Ferrante, J. & Smith, J. R. Universal features of the equation of state of solids. J. Phys. Condens. Matter 1, 1941–1963 (1989)

    Article  CAS  ADS  Google Scholar 

  23. Belonoshko, A. & Saxena, S. K. A molecular dynamics study of the pressure-volume-temperature properties of super-critical fluids: I. H2O. Geochim. Cosmochim. Acta 55, 381–387 (1991)

    Article  CAS  ADS  Google Scholar 

  24. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981)

    Article  ADS  Google Scholar 

  25. Zhang, J. & Herzberg, C. Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 GPa. J. Geophys. Res. 99, 17729–17742 (1994)

    Article  ADS  Google Scholar 

  26. Litasov, K. & Ohtani, E. Stability of various hydrous phases in CMAS pyrolite- H2O system up to 25 GPa. Phys. Chem. Miner. 30, 147–156 (2003)

    Article  CAS  ADS  Google Scholar 

  27. Ito, E. & Takahashi, E. Melting of peridotite at uppermost lower-mantle conditions. Nature 328, 514–517 (1987)

    Article  CAS  ADS  Google Scholar 

  28. Kawai, N. & Endo, S. The generation of ultrahigh hydrostatic pressures by a split sphere apparatus. Rev. Sci. Instrum. 41, 1178–1181 (1970)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank T. Kondo and H. Terasaki for discussions. This work was conducted as a part of the 21st Century Center-of-Excellence Program, ‘Advanced Science and Technology Center for the Dynamic Earth’, at Tohoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Suzuki.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakamaki, T., Suzuki, A. & Ohtani, E. Stability of hydrous melt at the base of the Earth's upper mantle. Nature 439, 192–194 (2006). https://doi.org/10.1038/nature04352

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04352

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing