Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The adult Drosophila posterior midgut is maintained by pluripotent stem cells


Vertebrate and invertebrate digestive systems show extensive similarities in their development, cellular makeup and genetic control1. The Drosophila midgut is typical: enterocytes make up the majority of the intestinal epithelial monolayer, but are interspersed with hormone-producing enteroendocrine cells2,3,4. Human (and mouse) intestinal cells are continuously replenished by stem cells, the misregulation of which may underlie some common digestive diseases and cancer5. In contrast, stem cells have not been described in the intestines of flies, and Drosophila intestinal cells have been thought to be relatively stable6,7. Here we use lineage labelling to show that adult Drosophila posterior midgut cells are continuously replenished by a distinctive population of intestinal stem cells (ISCs). As in vertebrates, ISCs are multipotent, and Notch signalling is required to produce an appropriate fraction of enteroendocrine cells8. Notch is also required for the differentiation of ISC daughter cells, a role that has not been addressed in vertebrates. Unlike previously characterized stem cells, which reside in niches containing a specific partner stromal cell9,10, ISCs adjoin only the basement membrane, differentiated enterocytes and their most recent daughters. The identification of Drosophila intestinal stem cells with striking similarities to their vertebrate counterparts will facilitate the genetic analysis of normal and abnormal intestinal function.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The Drosophila posterior midgut and its cells.
Figure 2: The midgut contains intestinal stem cells (ISCs).
Figure 3: ISCs reside at the base of the cell nests and are multipotent.
Figure 4: Notch signalling regulates ISC differentiation.


  1. Stainier, D. Y. No organ left behind: tales of gut development and evolution. Science 307, 1902–1904 (2005)

    ADS  CAS  Article  Google Scholar 

  2. Miller, A. in Biology of Drosophila (ed. Demerec, M.) 420–534 (Hafner, New York, 1950)

    Google Scholar 

  3. Yoon, J. G. & Stay, B. Immunocytochemical localization of Diploptera punctata allatostatin-like peptide in Drosophila melanogaster. J. Comp. Neurol. 363, 475–488 (1995)

    CAS  Article  Google Scholar 

  4. Siviter, R. J. et al. Expression and functional characterization of a Drosophila neuropeptide precursor with homology to mammalian preprotachykinin A. J. Biol. Chem. 275, 23273–23280 (2000)

    CAS  Article  Google Scholar 

  5. Radtke, F. & Clevers, H. Self-renewal and cancer of the gut: two sides of a coin. Science 307, 1904–1909 (2005)

    ADS  CAS  Article  Google Scholar 

  6. Gartner, L. P. Submicroscopic mophology of the adult Drosophila midgut. J. Baltimore Coll. Dent. Surg. 25, 64–76 (1970)

    CAS  PubMed  Google Scholar 

  7. Gartner, L. P. Ultrastructural examination of ageing and radiation-induced lifespan shortening in adult Drosophila midgut. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 23, 23–39 (1973)

    CAS  Article  Google Scholar 

  8. Schonhoff, S. E., Giel-Moloney, M. & Leiter, A. B. Minireview: Development and differentiation of gut endocrine cells. Endocrinology 145, 2639–2644 (2004)

    CAS  Article  Google Scholar 

  9. Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell 116, 769–778 (2004)

    CAS  Article  Google Scholar 

  10. Ohlstein, B., Kai, T., Decotto, E. & Spradling, A. C. Stem cell niches: theme and variations. Curr. Opin. Cell Biol. 16, 693–699 (2004)

    CAS  Article  Google Scholar 

  11. Baumann, O. Posterior midgut epithelial cells differ in their organization of the membrane skeleton from other Drosophila epidermis. Exp. Cell Res. 270, 176–187 (2001)

    CAS  Article  Google Scholar 

  12. Snodgrass, R. E. Principles of Insect Morphology (McGraw-Hill, New York, 1935)

    Google Scholar 

  13. Day, M. F. & Powning, R. F. A study of the processes of digestion in certain insects. Aust. J. Sci. Res. B 2, 175–215 (1949)

    Article  Google Scholar 

  14. Baldwin, K. M. & Kakim, R. S. Growth and differentiation of the larval midgut epithelium during molting. Tissue Cell 23, 411–422 (1991)

    CAS  Article  Google Scholar 

  15. Campbell, G. et al. RK2, a glial-specific homeodomain protein required for embryonic nerve cord condensation and viability in Drosophila. Development 120, 2957–2966 (1994)

    CAS  PubMed  Google Scholar 

  16. Riggleman, B., Schedl, P. & Wieschaus, E. Spatial expression of the Drosophila segment polarity gene armadillo is posttranscriptionally regulated by wingless. Cell 63, 549–560 (1990)

    CAS  Article  Google Scholar 

  17. Harrison, D. A. & Perrimon, N. Simple and efficient generation of marked clones in Drosophila. Curr. Biol. 3, 424–433 (1993)

    CAS  Article  Google Scholar 

  18. Margolis, J. & Spradling, A. Identification and behaviour of epithelial stem cells in the Drosophila ovary. Development 121, 3797–3807 (1995)

    CAS  PubMed  Google Scholar 

  19. Decotto, E. & Spradling, A. C. The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals. Dev. Cell 9, 501–510 (2005)

    CAS  Article  Google Scholar 

  20. Drummond-Barbosa, D. & Spradling, A. C. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev. Biol. 231, 265–278 (2001)

    CAS  Article  Google Scholar 

  21. Han, Y. S., Thompson, J., Kafatos, F. C. & Brillas-Mury, C. Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes. EMBO J. 19, 6030–6040 (2000)

    CAS  Article  Google Scholar 

  22. Shellenbarger, D. & Mohler, D. Temperature-sensitive mutations of the Notch locus in Drosophila melanogaster. Genetics 81, 143–162 (1975)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Micchelli, C. A. et al. γ-secretase/presenilin inhibitors for Alzheimer's disease phenocopy Notch mutations in Drosophila. FASEB J. 17, 79–81 (2003)

    CAS  Article  Google Scholar 

  24. Nässel, D. R. Tachykinin-related peptides in invertebrates: a review. Peptides 20, 141–158 (1999)

    Article  Google Scholar 

  25. Bendena, W. G., Donly, B. C. & Tobe, S. S. Allatostatins: a growing family of neuropeptides with structural and functional diversity. Ann. NY Acad. Sci. 897, 311–329 (1999)

    ADS  CAS  Article  Google Scholar 

  26. Micchelli, C. A. & Perrimon, N. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature advance online publication, 7 December 2005 (doi:10.1038/nature04371).

  27. Cox, R. T. & Spradling, A. C. A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis. Development 130, 1579–1590 (2003)

    CAS  Article  Google Scholar 

  28. Lilly, M. & Spradling, A. C. The Drosophila endocycle is controlled by cyclin E and lacks a checkpoint ensuring S phase completion. Genes Dev. 10, 2514–2526 (1996)

    CAS  Article  Google Scholar 

  29. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999)

    CAS  Article  Google Scholar 

Download references


M. Sepanski provided skilled assistance with the electron microscopy. We thank M. Buszczak, E. Decotto and T. Nystul for comments on the manuscript. We are grateful to D. Nässel for providing antibodies and K. Irvine for sending Notch55ell on a chromosome with FRT19A.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Allan Spradling.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ohlstein, B., Spradling, A. The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439, 470–474 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing