Electromagnetically induced transparency with tunable single-photon pulses

Abstract

Techniques to facilitate controlled interactions between single photons and atoms are now being actively explored1,2,3,4,5,6,7. These techniques are important for the practical realization of quantum networks, in which multiple memory nodes that utilize atoms for generation, storage and processing of quantum states are connected by single-photon transmission in optical fibres1,2. One promising avenue for the realization of quantum networks involves the manipulation of quantum pulses of light in optically dense atomic ensembles using electromagnetically induced transparency (EIT, refs 8, 9). EIT is a coherent control technique that is widely used for controlling the propagation of classical, multi-photon light pulses10,11,12,13,14 in applications such as efficient nonlinear optics15. Here we demonstrate the use of EIT for the controllable generation, transmission and storage of single photons with tunable frequency, timing and bandwidth. We study the interaction of single photons produced in a ‘source’ ensemble of 87Rb atoms at room temperature with another ‘target’ ensemble. This allows us to simultaneously probe the spectral and quantum statistical properties of narrow-bandwidth single-photon pulses, revealing that their quantum nature is preserved under EIT propagation and storage. We measure the time delay associated with the reduced group velocity of the single-photon pulses and report observations of their storage and retrieval.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental procedure and set-up.
Figure 2: Observation of conditional single-photon generation.
Figure 3: Observation of single-photon EIT.
Figure 4: Time-resolved measurements of single-photon pulse delay and storage.

References

  1. 1

    Briegel, H. J., Dur, W., van Enk, S. J., Cirac, J. I. & Zoller, P. in The Physics of Quantum Information (eds Bouwmeester, D., Ekert, A. & Zeilinger, A.) 281–293 (Springer, Berlin, 2000)

    Google Scholar 

  2. 2

    Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    ADS  CAS  Article  PubMed  Google Scholar 

  3. 3

    Kuzmich, A. et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 423, 731–734 (2003)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    van der Wal, C. H. et al. Atomic memory for correlated photon states. Science 301, 196–200 (2003)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    McKeever, J. et al. Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Kuhn, A., Hennrich, M. & Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002)

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Julsgaard, B., Sherson, J., Cirac, J. I., Fiurasek, J. & Polzik, E. S. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Harris, S. E. Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997)

    CAS  Article  Google Scholar 

  9. 9

    Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Kash, M. M. et al. Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett. 82, 5229–5232 (1999)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Phillips, D. F., Fleischhauer, A., Mair, A., Walsworth, R. L. & Lukin, M. D. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Longdell, J. J., Fraval, E., Sellars, M. J. & Manson, N. B. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. Phys. Rev. Lett. 95, 063601 (2005)

    ADS  CAS  Article  PubMed  Google Scholar 

  15. 15

    Braje, D. A., Balić, V., Yin, G. Y. & Harris, S. E. Low-light-level nonlinear optics with slow light. Phys. Rev. A 68, 041801(R) (2003)

    ADS  Article  Google Scholar 

  16. 16

    Chou, C. W., Polyakov, S. V., Kuzmich, A. & Kimble, H. J. Single-photon generation from stored excitation in an atomic ensemble. Phys. Rev. Lett. 92, 213601 (2004)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Eisaman, M. D. et al. Shaping quantum pulses of light via coherent atomic memory. Phys. Rev. Lett. 93, 233602 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  18. 18

    Jiang, W., Han, C., Xue, P., Duan, L.-M. & Guo, G.-C. Nonclassical photon pairs generated from a room-temperature atomic ensemble. Phys. Rev. A 69, 043819 (2004)

    ADS  Article  Google Scholar 

  19. 19

    Balić, V., Braje, D. A., Kolchin, P., Yin, G. Y. & Harris, S. E. Generation of paired photons with controllable waveforms. Phys. Rev. Lett. 94, 183601 (2005)

    ADS  Article  PubMed  Google Scholar 

  20. 20

    Matsukevich, D. N. & Kuzmich, A. Quantum state transfer between matter and light. Science 306, 663–666 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  21. 21

    Matsukevich, D. N. et al. Entanglement of a photon and a collective atomic excitation. Phys. Rev. Lett. 95, 040405 (2005)

    ADS  CAS  Article  PubMed  Google Scholar 

  22. 22

    Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995)

    Google Scholar 

  23. 23

    Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Eisaman, M. D. et al. in Fluctuations and Noise in Photonics and Quantum Optics III Vol. 5,842 (eds Hemmer, P. R., Gea-Banacloche, J. R., Heszler, P. & Zubairy, M. S.) 105–113 (SPIE, Bellingham, Washington, 2005)

    Google Scholar 

  25. 25

    Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000)

    ADS  CAS  Article  PubMed  Google Scholar 

  26. 26

    Akamatsu, D., Akiba, K. & Kozuma, M. Electromagnetically induced transparency with squeezed vacuum. Phys. Rev. Lett. 92, 203602 (2004)

    ADS  Article  PubMed  Google Scholar 

  27. 27

    Black, A. T., Thompson, J. K. & Vuletić, V. On-demand superradiant conversion of atomic spin gratings into single photons with high efficiency. Phys. Rev. Lett. 95, 133601 (2005)

    ADS  Article  PubMed  Google Scholar 

  28. 28

    Scully, M. O. & Ooi, C. H. R. Improving quantum microscopy and lithography via Raman photon pairs: II. Analysis. J. Opt. B 6, S816–S820 (2004)

    ADS  Article  Google Scholar 

  29. 29

    André, A., Bajcsy, M., Zibrov, A. S. & Lukin, M. D. Nonlinear optics with stationary pulses of light. Phys. Rev. Lett. 94, 063902 (2005)

    ADS  Article  PubMed  Google Scholar 

  30. 30

    André, A. Nonclassical States of Light and Atomic Ensembles: Generation and New Applications PhD thesis, Harvard Univ. (2005)

    Google Scholar 

Download references

Acknowledgements

We acknowledge T. Zibrova, A. Gorshkov, P. Hemmer, J. MacArthur, D. Phillips and R. Walsworth for discussions and experimental help. This work was supported by DARPA, the Packard and Sloan Foundations, and the NSF through the CAREER programme and the Harvard-MIT Center for Ultracold Atoms.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. D. Eisaman.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eisaman, M., André, A., Massou, F. et al. Electromagnetically induced transparency with tunable single-photon pulses. Nature 438, 837–841 (2005). https://doi.org/10.1038/nature04327

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.