Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A lever-arm rotation drives motility of the minus-end-directed kinesin Ncd

Abstract

Kinesins are microtubule-based motor proteins that power intracellular transport1,2. Most kinesin motors, exemplified by Kinesin-1, move towards the microtubule plus end, and the structural changes that govern this directional preference have been described3,4,5. By contrast, the nature and timing of the structural changes underlying the minus-end-directed motility of Kinesin-14 motors (such as Drosophila Ncd6,7) are less well understood. Using cryo-electron microscopy, here we demonstrate that a coiled-coil mechanical element of microtubule-bound Ncd rotates 70° towards the minus end upon ATP binding. Extending or shortening this coiled coil increases or decreases velocity, respectively, without affecting ATPase activity. An unusual Ncd mutant that lacks directional preference8 shows unstable nucleotide-dependent conformations of its coiled coil, underscoring the role of this mechanical element in motility. These results show that the force-producing conformational change in Ncd occurs on ATP binding, as in other kinesins, but involves the swing of a lever-arm mechanical element similar to that described for myosins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 3D maps of Ncd–microtubule complexes by cryo-EM.
Figure 2: Ncd mutants with truncated or extended necks.
Figure 3: Model of the Ncd motility cycle.

Similar content being viewed by others

References

  1. Hirokawa, N. & Takemura, R. Kinesin superfamily proteins and their various functions and dynamics. Exp. Cell Res. 301, 50–59 (2004)

    Article  CAS  Google Scholar 

  2. Sharp, D. J., Rogers, G. C. & Scholey, J. M. Microtubule motors in mitosis. Nature 407, 41–47 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Asbury, C. L., Fehr, A. N. & Block, S. M. Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302, 2130–2134 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Yildiz, A., Tomishige, M., Vale, R. D. & Selvin, P. R. Kinesin walks hand-over-hand. Science 303, 676–678 (2004)

    Article  ADS  CAS  Google Scholar 

  6. McDonald, H. B., Stewart, R. J. & Goldstein, L. S. The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell 63, 1159–1165 (1990)

    Article  CAS  Google Scholar 

  7. Endow, S. A., Henikoff, S. & Soler-Niedziela, L. Mediation of meiotic and early mitotic chromosome segregation in Drosophila by a protein related to kinesin. Nature 345, 81–83 (1990)

    Article  ADS  CAS  Google Scholar 

  8. Endow, S. A. & Higuchi, H. A mutant of the motor protein kinesin that moves in both directions on microtubules. Nature 406, 913–916 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Sablin, E. P. et al. Direction determination in the minus-end-directed kinesin motor ncd. Nature 395, 813–816 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Yun, M. et al. Rotation of the stalk/neck and one head in a new crystal structure of the kinesin motor protein, Ncd. EMBO J. 22, 5382–5389 (2003)

    Article  CAS  Google Scholar 

  11. Kozielski, F., De Bonis, S., Burmeister, W. P., Cohen-Addad, C. & Wade, R. H. The crystal structure of the minus-end-directed microtubule motor protein ncd reveals variable dimer conformations. Struct. Fold. Des. 7, 1407–1416 (1999)

    Article  CAS  Google Scholar 

  12. Endow, S. A. & Waligora, K. W. Determinants of kinesin motor polarity. Science 281, 1200–1202 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Wendt, T. G. et al. Microscopic evidence for a minus-end-directed power stroke in the kinesin motor ncd. EMBO J. 21, 5969–5978 (2002)

    Article  CAS  Google Scholar 

  14. Hirose, K., Lockhart, A., Cross, R. A. & Amos, L. A. Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. Proc. Natl Acad. Sci. USA 93, 9539–9544 (1996)

    Article  ADS  CAS  Google Scholar 

  15. Sosa, H. et al. A model for the microtubule–Ncd motor protein complex obtained by cryo-electron microscopy and image analysis. Cell 90, 217–224 (1997)

    Article  CAS  Google Scholar 

  16. Arnal, I., Metoz, F., DeBonis, S. & Wade, R. H. Three-dimensional structure of functional motor proteins on microtubules. Curr. Biol. 6, 1265–1270 (1996)

    Article  CAS  Google Scholar 

  17. Woehlke, G. et al. Microtubule interaction site of the kinesin motor. Cell 90, 207–216 (1997)

    Article  CAS  Google Scholar 

  18. Uyeda, T. Q., Abramson, P. D. & Spudich, J. A. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc. Natl Acad. Sci. USA 93, 4459–4464 (1996)

    Article  ADS  CAS  Google Scholar 

  19. Stewart, R. J., Thaler, J. P. & Goldstein, L. S. Direction of microtubule movement is an intrinsic property of the motor domains of kinesin heavy chain and Drosophila ncd protein. Proc. Natl Acad. Sci. USA 90, 5209–5213 (1993)

    Article  ADS  CAS  Google Scholar 

  20. Barrett, J. G., Manning, B. D. & Snyder, M. The Kar3p kinesin-related protein forms a novel heterodimeric structure with its associated protein Cik1p. Mol. Biol. Cell 11, 2373–2385 (2000)

    Article  CAS  Google Scholar 

  21. Sproul, L. R., Anderson, D. J., Mackey, A. T., Saunders, W. S. & Gilbert, S. P. Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends. Curr. Biol. 15, 1420–1427 (2005)

    Article  CAS  Google Scholar 

  22. Chu, H. M. et al. Kar3 interaction with Cik1 alters motor structure and function. EMBO J. 24, 3214–3223 (2005)

    Article  CAS  Google Scholar 

  23. Lockhart, A. & Cross, R. A. Origins of reversed directionality in the ncd molecular motor. EMBO J. 13, 751–757 (1994)

    Article  CAS  Google Scholar 

  24. Pechatnikova, E. & Taylor, E. W. Kinetic mechanism of monomeric non-claret disjunctional protein (Ncd) ATPase. J. Biol. Chem. 272, 30735–30740 (1997)

    Article  CAS  Google Scholar 

  25. Foster, K. A., Correia, J. J. & Gilbert, S. P. Equilibrium binding studies of non-claret disjunctional protein (Ncd) reveal cooperative interactions between the motor domains. J. Biol. Chem. 273, 35307–35318 (1998)

    Article  CAS  Google Scholar 

  26. Menetrey, J. et al. The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature 435, 779–785 (2005)

    Article  ADS  CAS  Google Scholar 

  27. deCastro, M. J., Fondecave, R. M., Clarke, L. A., Schmidt, C. F. & Stewart, R. J. Working strokes by single molecules of the kinesin-related microtubule motor ncd. Nature Cell Biol. 2, 724–729 (2000)

    Article  CAS  Google Scholar 

  28. Pechatnikova, E. & Taylor, E. W. Kinetics processivity and the direction of motion of Ncd. Biophys. J. 77, 1003–1016 (1999)

    Article  CAS  Google Scholar 

  29. Sharp, D. J., Yu, K. R., Sisson, J. C., Sullivan, W. & Scholey, J. M. Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos. Nature Cell Biol. 1, 51–54 (1999)

    Article  CAS  Google Scholar 

  30. Case, R. B., Pierce, D. W., Hom-Booher, N., Hart, C. L. & Vale, R. D. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell 90, 959–966 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Rice, J. Kardon and J. Ebstein for initial work on this project. This work was supported by NIH grants (to R.D.V. and R.A.M.). Some of the work presented here was conducted at the National Resource for Automated Molecular Microscopy, which is supported by the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald D. Vale.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure Legends

Text to accompany Supplementary Figures 1–5 referred to in the text, with additional references. (DOC 39 kb)

Supplementary Figure 1

This figure demonstrates that the Ncd neck position is not determined by the apparent interaction between the tip of the neck and the adjacent motor domain. (JPG 174 kb)

Supplementary Figure 2

This figure demonstrates that the Ncd neck occupies a similar position in the AMPPNP and ADPAlF4- states. (JPG 175 kb)

Supplementary Figure 3

This figure shows microtubule binding interface implied by docking experiments are reasonable. (JPG 140 kb)

Supplementary Figure 4

Statistical different maps provide additional support for our model for the bidirectional motility of N340K, and demonstrate that the AMPPNP and ADP-ALF4- states for this mutant are the same. (JPG 196 kb)

Supplementary Figure 5

Gel Filtration results which confirm the appropriate size for the Ncd heterodimer and monomer. (PDF 220 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endres, N., Yoshioka, C., Milligan, R. et al. A lever-arm rotation drives motility of the minus-end-directed kinesin Ncd. Nature 439, 875–878 (2006). https://doi.org/10.1038/nature04320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04320

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing