Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Storage and retrieval of single photons transmitted between remote quantum memories

Abstract

An elementary quantum network operation involves storing a qubit state in an atomic quantum memory node, and then retrieving and transporting the information through a single photon excitation to a remote quantum memory node for further storage or analysis. Implementations of quantum network operations are thus conditioned on the ability to realize matter-to-light and/or light-to-matter quantum state mappings. Here we report the generation, transmission, storage and retrieval of single quanta using two remote atomic ensembles. A single photon is generated from a cold atomic ensemble at one site 1, and is directed to another site through 100 metres of optical fibre. The photon is then converted into a single collective atomic excitation using a dark-state polariton approach2. After a programmable storage time, the atomic excitation is converted back into a single photon. This is demonstrated experimentally, for a storage time of 0.5 microseconds, by measurement of an anti-correlation parameter. Storage times exceeding ten microseconds are observed by intensity cross-correlation measurements. This storage period is two orders of magnitude longer than the time required to achieve conversion between photonic and atomic quanta. The controlled transfer of single quanta between remote quantum memories constitutes an important step towards distributed quantum networks.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: A schematic diagram of our experimental set-up, demonstrating generation, transmission, storage and retrieval of single photon excitations of the electromagnetic field.
Figure 2: Measured transmission spectra of a coherent probe field as a function of probe detuning in the presence of, and absence of, EIT.
Figure 3: Experimental and theoretical pulse shapes as a function of time, showing EIT, storage and retrieval.
Figure 4: Measured intensity cross-correlation function gsi and anticorrelation function α as a function of the idler photoelectric detection probability p1.
Figure 5: Normalized signal-idler intensity correlation function g si as a function of the storage time T s at Site B.

References

  1. Duan, L.-M., Lukin, M., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    ADS  CAS  Article  PubMed  Google Scholar 

  2. Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000)

    ADS  CAS  Article  PubMed  Google Scholar 

  3. Ekert, A. K. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    ADS  MathSciNet  CAS  Article  PubMed  Google Scholar 

  4. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997)

    ADS  CAS  Article  Google Scholar 

  5. Boschi, D. et al. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  6. Briegel, H.-J., Duer, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    ADS  CAS  Article  Google Scholar 

  7. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    ADS  CAS  Article  PubMed  Google Scholar 

  8. Raymer, M. G. & Walmsley, I. A. in Progress in Optics Vol. XXVIII (ed. Wolf, E.) 181–270 (North-Holland, Amsterdam, 1996)

    Google Scholar 

  9. Lukin, M. D. Colloquium: Trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75, 457–472 (2003)

    ADS  CAS  Article  Google Scholar 

  10. Kuzmich, A. & Kennedy, T. A. B. Non-symmetric entanglement of atomic ensembles. Phys. Rev. Lett. 92, 030407 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  11. Julsgaard, B. et al. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  12. Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999)

    ADS  CAS  Article  Google Scholar 

  13. Phillips, D. F. et al. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001)

    ADS  CAS  Article  PubMed  Google Scholar 

  14. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001)

    ADS  CAS  Article  PubMed  Google Scholar 

  15. Kuzmich, A. et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 423, 731–734 (2003)

    ADS  CAS  Article  PubMed  Google Scholar 

  16. van der Wal, C. H. et al. Atomic memory for correlated photon states. Science 301, 196–200 (2003)

    ADS  CAS  Article  PubMed  Google Scholar 

  17. Jiang, W. et al. Nonclassical photon pairs generated from a room-temperature atomic ensemble. Phys. Rev. A 69, 043819 (2004)

    ADS  Article  Google Scholar 

  18. Chou, C. W., Polyakov, S. V., Kuzmich, A. & Kimble, H. J. Single photon generation from stored excitation in an atomic ensemble. Phys. Rev. Lett. 92, 213601 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  19. Eisaman, M. D. et al. Shaping quantum pulses of light via coherent atomic memory. Phys. Rev. Lett. 93, 233602 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  20. Balic, V., Braje, D. A., Kolchin, P., Yin, G. Y. & Harris, S. E. Generation of paired photons with controllable waveforms. Phys. Rev Lett. 94, 183601 (2005)

    ADS  Article  PubMed  Google Scholar 

  21. Matsukevich, D. N. & Kuzmich, A. Quantum state transfer between matter and light. Science 306, 663–666 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  22. Matsukevich, D. N. et al. Entanglement of a photon and a collective atomic excitation. Phys. Rev. Lett. 95, 040405 (2005)

    ADS  CAS  Article  PubMed  Google Scholar 

  23. Harris, S. E. Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997)

    CAS  Article  Google Scholar 

  24. Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge Univ. Press, Cambridge, 1997)

    Book  Google Scholar 

  25. Grangier, P., Roger, G. & Aspect, A. Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences. Europhys. Lett. 1, 173–179 (1986)

    ADS  CAS  Article  Google Scholar 

  26. U'Ren, A. B. et al. Characterization of the non-classical nature of conditionally prepared single photons. Phys. Rev. A 72, R021802 (2005)

    ADS  Google Scholar 

  27. Clauser, J. F. Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect. Phys. Rev. D 9, 853–860 (1974)

    ADS  CAS  Article  Google Scholar 

  28. Jenkins, S. D. et al. Theory of dark state polariton collapses and revivals. Phys. Rev. A (submitted); preprint at http://arXiv.org/quant-pn/0511017 (2005).

  29. Matsukevich, D. N. et al. Observation of dark state polariton collapses and revivals. Phys. Rev. Lett. (submitted); preprint at http://arXiv.org/quant-pn/0511015 (2005).

Download references

Acknowledgements

This work was supported by NASA, Office of Naval Research Young Investigator Program, National Science Foundation, Research Corporation, Alfred P. Sloan Foundation, and Cullen-Peck Chair. We thank M. S. Chapman for discussions and E. T. Neumann for experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kuzmich.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains additional information on the theory of electromagnetically induced transparency (EIT) for atoms with Zeeman degeneracy, which is essential for adequate modelling of the system. We also include details of the analysis of the photoelectron counting statistics of the light fields detected in our experiment, in support of generation, storage, and retrieval of single photon states of the electromagnetic field. (PDF 167 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chanelière, T., Matsukevich, D., Jenkins, S. et al. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833–836 (2005). https://doi.org/10.1038/nature04315

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04315

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing