Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The formation of stars by gravitational collapse rather than competitive accretion

Abstract

There are two dominant models of how stars form. Under gravitational collapse, star-forming molecular clumps, of typically hundreds to thousands of solar masses (M), fragment into gaseous cores that subsequently collapse to make individual stars or small multiple systems1,2,3. In contrast, competitive accretion theory suggests that at birth all stars are much smaller than the typical stellar mass (0.5M), and that final stellar masses are determined by the subsequent accretion of unbound gas from the clump4,5,6,7,8. Competitive accretion models interpret brown dwarfs and free-floating planets as protostars ejected from star-forming clumps before they have accreted much mass; key predictions of this model are that such objects should lack disks, have high velocity dispersions, form more frequently in denser clumps9,10,11, and that the mean stellar mass should vary within the Galaxy8. Here we derive the rate of competitive accretion as a function of the star-forming environment, based partly on simulation12, and determine in what types of environments competitive accretion can occur. We show that no observed star-forming region can undergo significant competitive accretion, and that the simulations that show competitive accretion do so because the assumed properties differ from those determined by observation. Our result shows that stars form by gravitational collapse, and explains why observations have failed to confirm predictions of the competitive accretion model.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Shu, F. H., Adams, F. C. & Lizano, S. Star formation in molecular clouds—observation and theory. Annu. Rev. Astron. Astrophys. 25, 23–81 (1987)

    ADS  CAS  Article  Google Scholar 

  2. Padoan, P. & Nordlund, Å. The stellar initial mass function from turbulent fragmentation. Astrophys. J. 576, 870–879 (2002)

    ADS  CAS  Article  Google Scholar 

  3. Larson, R. B. Thermal physics, cloud geometry and the stellar initial mass function. Mon. Not. R. Astron. Soc. 359, 211–222 (2005)

    ADS  Article  Google Scholar 

  4. Bonnell, I. A., Bate, M. R. & Zinnecker, H. On the formation of massive stars. Mon. Not. R. Astron. Soc. 298, 93–102 (1998)

    ADS  Article  Google Scholar 

  5. Bonnell, I. A., Bate, M. R., Clarke, C. J. & Pringle, J. E. Competitive accretion in embedded stellar clusters. Mon. Not. R. Astron. Soc. 323, 785–794 (2001)

    ADS  Article  Google Scholar 

  6. Bonnell, I. A., Clarke, C. J., Bate, M. R. & Pringle, J. E. Accretion in stellar clusters and the initial mass function. Mon. Not. R. Astron. Soc. 324, 573–579 (2001)

    ADS  CAS  Article  Google Scholar 

  7. Bonnell, I. A., Vine, S. G. & Bate, M. R. Massive star formation: nurture, not nature. Mon. Not. R. Astron. Soc. 349, 735–741 (2004)

    ADS  Article  Google Scholar 

  8. Bate, M. R. & Bonnell, I. A. The origin of the initial mass function and its dependence on the mean Jeans mass in molecular clouds. Mon. Not. R. Astron. Soc. 356, 1201–1221 (2005)

    ADS  Article  Google Scholar 

  9. Bate, M. R., Bonnell, I. A. & Bromm, V. The formation mechanism of brown dwarfs. Mon. Not. R. Astron. Soc. 332, L65–L68 (2002)

    ADS  Article  Google Scholar 

  10. Bate, M. R., Bonnell, I. A. & Bromm, V. The formation of a star cluster: predicting the properties of stars and brown dwarfs. Mon. Not. R. Astron. Soc. 339, 577–599 (2003)

    ADS  Article  Google Scholar 

  11. Mohanty, S., Jayawardhana, R. & Basri, G. The T Tauri phase down to nearly planetary masses: echelle spectra of 82 very low mass stars and brown dwarfs. Astrophys. J. 626, 498–522 (2005)

    ADS  CAS  Article  Google Scholar 

  12. Krumholz, M. R., McKee, C. F. & Klein, R. I. Bondi-Hoyle accretion in a turbulent medium. Astrophys. J. (in the press); preprint at http://arXiv.org/astro-ph/0510410 (2005)

  13. McKee, C. F. & Tan, J. C. The formation of massive stars from turbulent cores. Astrophys. J. 585, 850–871 (2003)

    ADS  CAS  Article  Google Scholar 

  14. Padoan, P., Kritsuk, A., Norman, M. L. & Nordlund, Å. A solution to the pre-main-sequence accretion problem. Astrophys. J. Lett. 622, L61–L64 (2005)

    ADS  Article  Google Scholar 

  15. Bertoldi, F. & McKee, C. F. Pressure-confined clumps in magnetized molecular clouds. Astrophys. J. 395, 140–157 (1992)

    ADS  Article  Google Scholar 

  16. Fiege, J. D. & Pudritz, R. E. Helical fields and filamentary molecular clouds—I. Mon. Not. R. Astron. Soc. 311, 85–104 (2000)

    ADS  Article  Google Scholar 

  17. Edgar, R. & Clarke, C. The effect of radiative feedback on Bondi-Hoyle flow around a massive star. Mon. Not. R. Astron. Soc. 349, 678–686 (2004)

    ADS  Article  Google Scholar 

  18. Ruffert, M. & Arnett, D. Three-dimensional hydrodynamic Bondi-Hoyle accretion. 2: Homogeneous medium at mach 3 with γ = 5/3. Astrophys. J. 427, 351–376 (1994)

    ADS  Article  Google Scholar 

  19. Larson, R. B. Turbulence and star formation in molecular clouds. Mon. Not. R. Astron. Soc. 194, 809–826 (1981)

    ADS  CAS  Article  Google Scholar 

  20. Motte, F., Andre, P. & Neri, R. The initial conditions of star formation in the ρ Ophiuchi main cloud: wide-field millimeter continuum mapping. Astron. Astrophys. 336, 150–172 (1998)

    ADS  CAS  Google Scholar 

  21. Testi, L. & Sargent, A. I. Star formation in clusters: A survey of compact millimeter-wave sources in the Serpens core. Astrophys. J. Lett. 508, L91–L94 (1998)

    ADS  Article  Google Scholar 

  22. Johnstone, D., Fich, M., Mitchell, G. F. & Moriarty-Schieven, G. Large area mapping at 850 microns. III. Analysis of the clump distribution in the Orion B molecular cloud. Astrophys. J. 559, 307–317 (2001)

    ADS  Article  Google Scholar 

  23. Plume, R., Jaffe, D. T., Evans, N. J., Martin-Pintado, J. & Gomez-Gonzalez, J. Dense gas and star formation: Characteristics of cloud cores associated with water masers. Astrophys. J. 476, 730–749 (1997)

    ADS  CAS  Article  Google Scholar 

  24. Klessen, R. S. & Burkert, A. The formation of stellar clusters: gaussian cloud conditions I. Astrophys. J. Suppl. 128, 287–319 (2000)

    ADS  Article  Google Scholar 

  25. Klessen, R. S. & Burkert, A. The formation of stellar clusters: gaussian cloud conditions II. Astrophys. J. 549, 386–401 (2001)

    ADS  Article  Google Scholar 

  26. Bate, M. R., Bonnell, I. A. & Bromm, V. The formation of close binary systems by dynamical interactions and orbital decay. Mon. Not. R. Astron. Soc. 336, 705–713 (2002)

    ADS  Article  Google Scholar 

  27. Beuther, H. & Schilke, P. Fragmentation in massive star formation. Science 303, 1167–1169 (2004)

    ADS  CAS  Article  Google Scholar 

  28. Quillen, A. C. et al. Turbulence driven by outflow-blown cavities in the molecular cloud of NGC 1333. Astrophys. J. (in the press); preprint at http://arXiv.org/astro-ph/0503167 (2005)

  29. Cho, J. & Lazarian, A. Compressible magnetohydrodynamic turbulence: mode coupling, scaling relations, anisotropy, viscosity-damped regime and astrophysical implications. Mon. Not. R. Astron. Soc. 345, 325–339 (2003)

    ADS  Article  Google Scholar 

  30. Kramer, C. & Winnewisser, G. A molecular survey of the dark cloud L 1495 in Taurus. Astron. Astrophys. Suppl. 89, 421–428 (1991)

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. T. Fisher for discussions and P. Padoan for comments. This work was supported by grants from NASA through the Hubble Fellowship, GSRP and ATP programmes, by the NSF, and by the US DOE through the Lawrence Livermore National Laboratory. Computer simulations for this work were performed at the San Diego Supercomputer Center (supported by the NSF), the National Energy Research Scientific Computer Center (supported by the US DOE), and Lawrence Livermore National Laboratory (supported by the US DOE). M.R.K. is a Hubble Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Krumholz.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains supplementary discussion and equations. (PDF 36 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krumholz, M., McKee, C. & Klein, R. The formation of stars by gravitational collapse rather than competitive accretion. Nature 438, 332–334 (2005). https://doi.org/10.1038/nature04280

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04280

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing