Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phyllosilicates on Mars and implications for early martian climate

Abstract

The recent identification of large deposits of sulphates by remote sensing and in situ observations has been considered evidence of the past presence of liquid water on Mars. Here we report the unambiguous detection of diverse phyllosilicates, a family of aqueous alteration products, on the basis of observations by the OMEGA imaging spectrometer on board the Mars Express spacecraft. These minerals are mainly associated with Noachian outcrops, which is consistent with an early active hydrological system, sustaining the long-term contact of igneous minerals with liquid water. We infer that the two main families of hydrated alteration products detected—phyllosilicates and sulphates—result from different formation processes. These occurred during two distinct climatic episodes: an early Noachian Mars, resulting in the formation of hydrated silicates, followed by a more acidic environment, in which sulphates formed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phyllosilicate spectra as identified in the OMEGA observations.
Figure 2: Variation of the position and shape of the absorption feature in the 2.30-µm region, attributed to varying Fe/Mg abundance.
Figure 3: Dark deposit in a depression in Ismenius Lacus.
Figure 4: Detection of Fe-rich clays over Noachian outcrop in Syrtis Major.
Figure 5: Spatial distributions of minerals in the Nili Fossae region.
Figure 6: Identification of clays in Mawrth Vallis.

Similar content being viewed by others

References

  1. Gendrin, A. et al. Sulfates in Martian layered terrains: the OMEGA/Mars Express view. Science 307, 1587–1591 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Langevin, Y., Poulet, F., Bibring, J.-P. & Gondet, B. Sulfates in the North polar region of Mars detected by OMEGA/Mars Express. Science 307, 1584–1586 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Squyres, S. et al. The Opportunity rover's Athena Science Investigation at Meridiani Planum, Mars. Science 306, 1698–1703 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Toulmin, P. et al. Geochemical and mineralogical interpretation of the Viking inorganic chemical results. J. Geophys. Res. 82, 4625–4634 (1977)

    Article  ADS  CAS  Google Scholar 

  5. Bridges, J. C. et al. Alteration assemblages in martian meteorites: implications for near-surface processes. Space Sci. Rev. 96, 365–392 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Clark, R. N., Swayze, G. A., Singer, R. B. & Pollack, J. B. High-resolution reflectance spectra of Mars in the 2.3-micron region—Evidence for the mineral scapolite. J. Geophys. Res. 95, 14463–14480 (1990)

    Article  ADS  Google Scholar 

  7. Wyatt, M. B. & McSween, H. Y. Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars. Nature 417, 263–266 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Bandfield, J. L. Global mineral distributions on Mars. J. Geophys. Res. 107, doi:10.1029/2001JE001510 (2002)

  9. Kraft, M. D., Michalski, J. R. & Sharp, T. G. Effects of pure silica coatings on thermal emission spectra of basaltic rocks: Considerations for Martian surface mineralogy. Geophys. Res. Lett. 30, doi:10.1029/2003GL018848 (2003)

  10. Bibring, J.-P. et al. Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307, 1576–1581 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Mustard, J. et al. Olivine and pyroxene diversity in the crust of Mars. Science 307, 1594–1597 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Bishop, J. L. & Pieters, C. M. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials. J. Geophys. Res. 100, 5369–5379 (1995)

    Article  ADS  CAS  Google Scholar 

  13. Bishop, J. L., Murad, E. & Dyar, M. D. The influence of octahedral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy. Clay Mineral. 37, 617–628 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Bishop, J. L., Madejovà, J., Komadel, P. & Fröschl, H. The influence of structural Fe, Al, and Mg on the infrared OH bands in spectra of dioctahedral smectites. Clay Mineral. 37, 607–616 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Clark, R. N., King, T. V. V., Klejwa, M., Swayze, G. A. & Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. 95, 12653–12680 (1990)

    Article  ADS  Google Scholar 

  16. Keeling, J., Mauger, A. & Raven, M. in Regolith 2004 (ed. Roach, I. C.) 166–170 (Cooperative Research Centre/Landscape Environments and Mineral Exploration (CRC/LEME), 2004).

  17. Frost, R. L., Kloprogge, J. T. & Ding, Z. Near-infrared spectroscopy study of nontronites and ferruginous smectite. Spectrochim. Acta A 58, 1657–1668 (2002)

    Article  ADS  Google Scholar 

  18. Hiesinger, H. & Head, J. W. The Syrtis Major volcanic province, Mars: Synthesis from Mars Global Surveyor data. J. Geophys. Res. 109, E01004, doi:10.1029/2003JE002143 (2004)

    Article  ADS  Google Scholar 

  19. Hoefen, T. M. et al. Discovery of olivine in the Nili Fossae region of Mars. Science 302, 627–630 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Christensen, P. R. et al. Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science 300, 2056–2061 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Hamilton, V. E. & Christensen, P. R. Evidence for extensive, olivine-rich bedrock on Mars. Geology (in the press) (2005)

  22. Malin, M. C. & Edgett, K. S. Sedimentary rocks of early Mars. Science 290, 1927–1937 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Edgett, K. S. & Parker, T. J. Water on early Mars: Possible subaqueous sedimentary deposits covering ancient cratered terrain in western Arabia and Sinus Meridiani. Geophys. Res. Lett. 24, 2897–2900 (1997)

    Article  ADS  Google Scholar 

  24. Ivanov, M. A. & Head, J. W. Chryse Planitia, Mars: Topographic configuration, outflow channel continuity and sequence, and tests for hypothesized ancient bodies of water using Mars Orbiter Laser Altimeter (MOLA) data. J. Geophys. Res. 106, 3275–3295 (2001)

    Article  ADS  Google Scholar 

  25. Velde, B., Righi, D., Meunier, A., Hillier, S. & Inoue, A. in Origin and Mineralogy of Clays (ed. Velde, B.) 8–42 (Springer, Berlin, 1995)

    Book  Google Scholar 

  26. Righi, D. & Meunier, A. in Origin and Mineralogy of Clays (ed. Velde, B.) 43–157 (Springer, Berlin, 1995)

    Book  Google Scholar 

  27. Schiffman, P., Spero, H. J., Southard, R. J. & Swanson, D. A. Controls on palagonitization versus pedogenic weathering of basaltic tephra: Evidence from the consolidation and geochemistry of the Keanakako'i Ash Member, Kilauea Volcano. Geochem. Geophys. Geosyst. 1, doi:10.1029/2000GC000068 (2000)

  28. Gooding, J. L. Chemical weathering on Mars—Thermodynamic stabilities of primary minerals and their alteration products from mafic igneous rocks. Icarus 33, 483–513 (1978)

    Article  ADS  CAS  Google Scholar 

  29. Allen, P. A. Earth Surface Processes (Blackwell Science, Malden, Massachusetts, 1997)

    Book  Google Scholar 

  30. Dickinson, W. W. & Rosen, M. R. Antarctic permafrost: an analogue for water and diagenetic minerals on Mars. Geology 31, 199–202 (2003)

    Article  ADS  CAS  Google Scholar 

  31. Newsom, H. E. Hydrothermal alteration of impact melt sheets with implications for Mars. Icarus 44, 207–216 (1980)

    Article  ADS  Google Scholar 

  32. Rathbun, J. A. & Squyres, S. W. Hydrothermal systems associated with Martian impact craters. Icarus 157, 362–372 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Mars Express is operated by ESA/ESOC. Laboratory reflectance data used in this paper are provided through cooperation between the OMEGA team and NASA and the Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) team. Reflectance measurements were acquired at the NASA Reflectance Experiment Laboratory (RELAB) at Brown University.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to F. Poulet.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poulet, F., Bibring, JP., Mustard, J. et al. Phyllosilicates on Mars and implications for early martian climate. Nature 438, 623–627 (2005). https://doi.org/10.1038/nature04274

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04274

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing