Article

Phyllosilicates on Mars and implications for early martian climate

Received:
Accepted:
Published online:

Abstract

The recent identification of large deposits of sulphates by remote sensing and in situ observations has been considered evidence of the past presence of liquid water on Mars. Here we report the unambiguous detection of diverse phyllosilicates, a family of aqueous alteration products, on the basis of observations by the OMEGA imaging spectrometer on board the Mars Express spacecraft. These minerals are mainly associated with Noachian outcrops, which is consistent with an early active hydrological system, sustaining the long-term contact of igneous minerals with liquid water. We infer that the two main families of hydrated alteration products detected—phyllosilicates and sulphates—result from different formation processes. These occurred during two distinct climatic episodes: an early Noachian Mars, resulting in the formation of hydrated silicates, followed by a more acidic environment, in which sulphates formed.

  • Subscribe to Nature for full access:

    $199

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    et al. Sulfates in Martian layered terrains: the OMEGA/Mars Express view. Science 307, 1587–1591 (2005)

  2. 2.

    , , & Sulfates in the North polar region of Mars detected by OMEGA/Mars Express. Science 307, 1584–1586 (2005)

  3. 3.

    et al. The Opportunity rover's Athena Science Investigation at Meridiani Planum, Mars. Science 306, 1698–1703 (2004)

  4. 4.

    et al. Geochemical and mineralogical interpretation of the Viking inorganic chemical results. J. Geophys. Res. 82, 4625–4634 (1977)

  5. 5.

    et al. Alteration assemblages in martian meteorites: implications for near-surface processes. Space Sci. Rev. 96, 365–392 (2001)

  6. 6.

    , , & High-resolution reflectance spectra of Mars in the 2.3-micron region—Evidence for the mineral scapolite. J. Geophys. Res. 95, 14463–14480 (1990)

  7. 7.

    & Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars. Nature 417, 263–266 (2002)

  8. 8.

    Global mineral distributions on Mars. J. Geophys. Res. 107, doi:10.1029/2001JE001510 (2002)

  9. 9.

    , & Effects of pure silica coatings on thermal emission spectra of basaltic rocks: Considerations for Martian surface mineralogy. Geophys. Res. Lett. 30, doi:10.1029/2003GL018848 (2003)

  10. 10.

    et al. Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307, 1576–1581 (2005)

  11. 11.

    et al. Olivine and pyroxene diversity in the crust of Mars. Science 307, 1594–1597 (2005)

  12. 12.

    & Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials. J. Geophys. Res. 100, 5369–5379 (1995)

  13. 13.

    , & The influence of octahedral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy. Clay Mineral. 37, 617–628 (2002)

  14. 14.

    , , & The influence of structural Fe, Al, and Mg on the infrared OH bands in spectra of dioctahedral smectites. Clay Mineral. 37, 607–616 (2002)

  15. 15.

    , , , & High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. 95, 12653–12680 (1990)

  16. 16.

    Keeling, J., Mauger, A. & Raven, M. in Regolith 2004 (ed. Roach, I. C.) 166–170 (Cooperative Research Centre/Landscape Environments and Mineral Exploration (CRC/LEME), 2004).

  17. 17.

    , & Near-infrared spectroscopy study of nontronites and ferruginous smectite. Spectrochim. Acta A 58, 1657–1668 (2002)

  18. 18.

    & The Syrtis Major volcanic province, Mars: Synthesis from Mars Global Surveyor data. J. Geophys. Res. 109, E01004, doi:10.1029/2003JE002143 (2004)

  19. 19.

    et al. Discovery of olivine in the Nili Fossae region of Mars. Science 302, 627–630 (2003)

  20. 20.

    et al. Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science 300, 2056–2061 (2003)

  21. 21.

    & Evidence for extensive, olivine-rich bedrock on Mars. Geology (in the press) (2005)

  22. 22.

    & Sedimentary rocks of early Mars. Science 290, 1927–1937 (2000)

  23. 23.

    & Water on early Mars: Possible subaqueous sedimentary deposits covering ancient cratered terrain in western Arabia and Sinus Meridiani. Geophys. Res. Lett. 24, 2897–2900 (1997)

  24. 24.

    & Chryse Planitia, Mars: Topographic configuration, outflow channel continuity and sequence, and tests for hypothesized ancient bodies of water using Mars Orbiter Laser Altimeter (MOLA) data. J. Geophys. Res. 106, 3275–3295 (2001)

  25. 25.

    , , , & in Origin and Mineralogy of Clays (ed. Velde, B.) 8–42 (Springer, Berlin, 1995)

  26. 26.

    & in Origin and Mineralogy of Clays (ed. Velde, B.) 43–157 (Springer, Berlin, 1995)

  27. 27.

    , , & Controls on palagonitization versus pedogenic weathering of basaltic tephra: Evidence from the consolidation and geochemistry of the Keanakako'i Ash Member, Kilauea Volcano. Geochem. Geophys. Geosyst. 1, doi:10.1029/2000GC000068 (2000)

  28. 28.

    Chemical weathering on Mars—Thermodynamic stabilities of primary minerals and their alteration products from mafic igneous rocks. Icarus 33, 483–513 (1978)

  29. 29.

    Earth Surface Processes (Blackwell Science, Malden, Massachusetts, 1997)

  30. 30.

    & Antarctic permafrost: an analogue for water and diagenetic minerals on Mars. Geology 31, 199–202 (2003)

  31. 31.

    Hydrothermal alteration of impact melt sheets with implications for Mars. Icarus 44, 207–216 (1980)

  32. 32.

    & Hydrothermal systems associated with Martian impact craters. Icarus 157, 362–372 (2002)

Download references

Acknowledgements

Mars Express is operated by ESA/ESOC. Laboratory reflectance data used in this paper are provided through cooperation between the OMEGA team and NASA and the Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) team. Reflectance measurements were acquired at the NASA Reflectance Experiment Laboratory (RELAB) at Brown University.

Author information

Affiliations

  1. Institut d'Astrophysique Spatiale, Université Paris-Sud and CNRS (UMR 8617) F-91405 Orsay, France

    • F. Poulet
    • , J.-P. Bibring
    • , Y. Langevin
    • , B. Gondet
    •  & C. Gomez
  2. Geological Sciences, Brown University, Providence, Rhode Island 02912, USA

    • J. F. Mustard
    •  & A. Gendrin
  3. Interactions et Dynamique des Environnements de Surface, F-91405 Orsay, France

    • N. Mangold
  4. Earth and Planetary Sciences, Washington University, St Louis, Missouri 63130, USA

    • R. E. Arvidson
  5. IAS, Université Paris-Sud, F-91405, France

    • M. Berthé
    • , J.-P. Bibring
    • , Y. Langevin
    • , S. Erard
    • , O. Forni
    • , A. Gendrin
    • , B. Gondet
    • , N. Manaud
    • , F. Poulet
    • , G. Poulleau
    •  & A. Soufflot
  6. LESIA, Observatoire de Paris/Meudon, 92195 Meudon, France

    • M. Combes
    • , P. Drossart
    • , T. Encrenaz
    • , T. Fouchet
    •  & R. Melchiorri
  7. IFSI-INAF, Via del Fosso del Cavaliere, 00133 Rome, Italy

    • G. Bellucci
    • , F. Altieri
    • , V. Formisano
    • , S. Fonti
    • , F. Capaccioni
    • , P. Cerroni
    •  & A. Coradini
  8. Space Research Institute (IKI) 117997, 84/32 Profsoyuznaya Str, Moscow, Russia

    • O. Korablev
    • , V. Kottsov
    • , N. Ignatiev
    • , D. Titov
    •  & L. Zasova
  9. IDES, Université Paris-Sud, F-91405 Orsay, France

    • N. Mangold
  10. Observatoire Midi-Pyrénées, 31000 Toulouse, France

    • P. Pinet
  11. Laboratoire de Planétologie, 38400 Toulouse, France

    • B. Schmitt
  12. Planétologie, Université de Nantes, 44322 Nantes, France

    • C. Sotin
  13. DLR, Berlin, 12489, Germany

    • E. Hauber
    • , H. Hoffmann
    •  & R. Jaumann
  14. MPAE, Lindau, Germany

    • U. Keller
  15. Earth and Planetary Sciences, Washington University, Saint-Louis, Missouri 63130, USA

    • R. Arvidson
  16. Geological Sciences, Brown University, Providence, Rhode Island 02912, USA

    • J. Mustard
  17. LMD, Université de Paris 6, 75252, Paris, France.

    • F. Forget

Consortia

  1. The Omega Team

Authors

  1. Search for F. Poulet in:

  2. Search for J.-P. Bibring in:

  3. Search for J. F. Mustard in:

  4. Search for A. Gendrin in:

  5. Search for N. Mangold in:

  6. Search for Y. Langevin in:

  7. Search for R. E. Arvidson in:

  8. Search for B. Gondet in:

  9. Search for C. Gomez in:

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Corresponding author

Correspondence to F. Poulet.