A colonization factor links Vibrio cholerae environmental survival and human infection


Many bacteria that cause diseases must be able to survive inside and outside the host. Attachment to and colonization of abiotic or biotic surfaces is a common mechanism by which various microorganisms enhance their ability to survive in diverse environments1. Vibrio cholerae is a Gram-negative aquatic bacillus that is often found in the environment attached to the chitinous exoskeletons of zooplankton2,3. It has been suggested that attachment to zooplankton enhances environmental survival of Vibrio spp., probably by providing both an abundant source of carbon and nitrogen and protection from numerous environmental challenges4. On ingestion by humans, some serogroups of V. cholerae cause the diarrhoeal disease cholera5. The pathophysiology of cholera is a result of the effects of cholera toxin on intestinal epithelial cells. For sufficient quantities of cholera toxin to reach the intestinal epithelium and to produce clinical symptoms, colonization of the small bowel must occur. Because most V. cholerae do not colonize humans, but all probably require strategies for survival in the environment, we considered that colonization factors selected for in the environment may be the same as those required for intestinal colonization of humans. In support of this hypothesis, here we have identified a single protein required for efficient intestinal colonization that mediates attachment to both zooplankton and human epithelial cells by binding to a sugar present on both surfaces.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: VCA0811 encodes a putative chitin-binding protein (GbpA) required for epithelial cell attachment.
Figure 2: GbpA is a GlcNAc-sensitive chitin-binding protein.
Figure 3: GbpA is important for environmental and intestinal colonization.
Figure 4: GbpA is a secreted protein that requires EPS for extracellular localization.


  1. 1

    Reidl, J. & Klose, K. E. Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol. Rev. 26, 125–139 (2002)

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Tamplin, M. L., Gauzens, A. L., Huq, A., Sack, D. A. & Colwell, R. R. Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl. Environ. Microbiol. 56, 1977–1980 (1990)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Cottingham, K. L., Chiavelli, D. A. & Taylor, R. K. Environmental microbe and human pathogen: the ecology and microbiology of Vibrio cholerae. Front. Ecol. Environ. 1, 80–86 (2003)

    Article  Google Scholar 

  4. 4

    Huq, A., Small, E., West, P. & Colwell, R. R. The role of planktonic copepods in the survival and multiplication of Vibrio cholerae in the aquatic environment. in Vibrios in the Environment (ed. Colwell, R. R.) 521–534 (John Wiley & Sons, New York, NY, 1984)

    Google Scholar 

  5. 5

    Kaper, J. B., Morris, J. G. & Levine, M. M. Cholera. Clin. Microbiol. Rev. 8, 48–86 (1995)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Heidelberg, J. F. et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477–483 (2000)

    ADS  CAS  Article  PubMed  Google Scholar 

  7. 7

    Nalin, D. R., Daya, V., Reid, A., Levine, M. M. & Cisneros, L. Adsorption and growth of Vibrio cholerae on chitin. Infect. Immun. 25, 768–770 (1979)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Meibom, K. L. et al. The Vibrio cholerae chitin utilization program. Proc. Natl Acad. Sci. USA 101, 2524–2529 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  9. 9

    Zampini, M. et al. Vibrio cholerae persistence in aquatic environments and colonization of intestinal cells: involvement of a common adhesion mechanism. FEMS Microbiol. Lett. 244, 267–273 (2005)

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Tarsi, R. & Pruzzo, C. Role of surface proteins in Vibrio cholerae attachment to chitin. Appl. Environ. Microbiol. 65, 1348–1351 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Sasmal, D., Guhathakurta, B., Ghosh, A. N., Pal, C. R. & Datta, A. N-acetyl-d-glucosamine-specific lectin purified from Vibrio cholerae 01. FEMS Microbiol. Lett. 77, 217–224 (1992)

    CAS  PubMed  Google Scholar 

  12. 12

    Finne, J. et al. Novel polyfucosylated N-linked glycopeptides with blood group A, H, X, and Y determinants from human small intestinal epithelial cells. J. Biol. Chem. 264, 5720–5735 (1989)

    CAS  PubMed  Google Scholar 

  13. 13

    Bjork, S., Breimer, M. E., Hansson, G. C., Karlsson, K. A. & Leffler, H. Structures of blood group glycosphingolipids of human small intestine. A relation between the expression of fucolipids of epithelial cells and the ABO, Le and Se phenotype of the donor. J. Biol. Chem. 262, 6758–6765 (1987)

    CAS  PubMed  Google Scholar 

  14. 14

    Miller, W. G. & Lindow, S. E. An improved GFP cloning cassette designed for prokaryotic transcriptional fusions. Gene 191, 149–153 (1997)

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Chiavelli, D. A., Marsh, J. W. & Taylor, R. K. The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl. Environ. Microbiol. 67, 3220–3225 (2001)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Huo, A. et al. A simple filtration method to remove plankton-associated Vibrio cholerae in raw water supplies in developing countries. Appl. Environ. Microbiol. 62, 2508–2512 (1996)

    PubMed Central  Google Scholar 

  17. 17

    Colwell, R. R. et al. Reduction of cholera in Bangladeshi villages by simple filtration. Proc. Natl Acad. Sci. USA 100, 1051–1055 (2003)

    ADS  CAS  Article  PubMed  Google Scholar 

  18. 18

    Sun, D. X., Mekalanos, J. J. & Taylor, R. K. Antibodies directed against the toxin-coregulated pilus isolated from Vibrio cholerae provide protection in the infant mouse experimental cholera model. J. Infect. Dis. 161, 1231–1236 (1990)

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Connell, T. D., Metzger, D. J., Lynch, J. & Folster, J. P. Endochitinase is transported to the extracellular milieu by the eps-encoded general secretory pathway of Vibrio cholerae. J. Bacteriol. 180, 5591–5600 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Davis, B. M. et al. Convergence of the secretory pathways for cholera toxin and the filamentous phage, CTXφ. Science 288, 333–335 (2000)

    ADS  CAS  Article  PubMed  Google Scholar 

  21. 21

    Taylor, R. K., Miller, V. L., Furlong, D. B. & Mekalanos, J. J. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc. Natl Acad. Sci. USA 84, 2833–2837 (1987)

    ADS  CAS  Article  PubMed  Google Scholar 

  22. 22

    Skorupski, K. & Taylor, R. K. Sequence and functional analysis of the gene encoding Vibrio cholerae cAMP receptor protein. Gene 198, 297–303 (1997)

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Skorupski, K. & Taylor, R. K. Cyclic AMP and its receptor protein negatively regulate the coordinate expression of cholera toxin and toxin-coregulated pilus in Vibrio cholerae. Proc. Natl Acad. Sci. USA 94, 265–270 (1997)

    ADS  CAS  Article  PubMed  Google Scholar 

  24. 24

    Skorupski, K. & Taylor, R. K. Positive selection vectors for allelic exchange. Gene 169, 47–52 (1996)

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Benitez, J. A. et al. Adherence of Vibrio cholerae to cultured differentiated human intestinal cells: an in vitro colonization model. Infect. Immun. 65, 3474–3477 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Kirn, T. J. & Taylor, R. K. TcpF is a soluble colonization factor and protective antigen secreted by El Tor and classical O1 and O139 Vibrio cholerae serogroups. Infect. Immun. 73, 4461–4470 (2005)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Kirn, T. J., Bose, N. & Taylor, R. K. Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway in Vibrio cholerae. Mol. Microbiol. 49, 81–92 (2003)

    CAS  Article  PubMed  Google Scholar 

Download references


We thank C. Sandoe for technical assistance. This work was supported by the NIH and a Rosalind Borison memorial fellowship.

Author information



Corresponding author

Correspondence to Ronald K. Taylor.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1–5. (PPT 907 kb)

Supplementary Figure Legends

This file contains text to accompany the above Supplementary Figures. (DOC 39 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kirn, T., Jude, B. & Taylor, R. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature 438, 863–866 (2005). https://doi.org/10.1038/nature04249

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.