Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanofabricated media with negative permeability at visible frequencies


A great deal of attention has recently been focused on a new class of smart materials—so-called left-handed media—that exhibit highly unusual electromagnetic properties and promise new device applications1,2,3,4,5,6. Left-handed materials require negative permeability µ, an extreme condition that has so far been achieved only for frequencies in the microwave to terahertz range7,8,9,10,11. Extension of the approach described in ref. 7 to achieve the necessary high-frequency magnetic response in visible optics presents a formidable challenge12,13,14,15, as no material—natural or artificial—is known to exhibit any magnetism at these frequencies. Here we report a nanofabricated medium consisting of electromagnetically coupled pairs of gold dots with geometry carefully designed at a 10-nm level. The medium exhibits a strong magnetic response at visible-light frequencies, including a band with negative µ. The magnetism arises owing to the excitation of an antisymmetric plasmon resonance. The high-frequency permeability qualitatively reveals itself via optical impedance matching. Our results demonstrate the feasibility of engineering magnetism at visible frequencies and pave the way towards magnetic and left-handed components for visible optics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanofabricated medium with magnetic response at optical frequencies.
Figure 2: Experimental reflection spectra for our nanostructured media.
Figure 3: Numerical simulations of optical response for interacting Au pillars.
Figure 4: Example of fitting the experimental reflection spectra with theory.


  1. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of permittivity and permeability. Sov. Phys. Usp. 10, 509–514 (1968)

    Article  ADS  Google Scholar 

  2. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Pendry, J. B. Positively negative. Nature 423, 22–23 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Houck, A. A., Brock, J. B. & Chuang, I. L. Experimental observations of a left-handed material that obeys Snell's law. Phys. Rev. Lett. 90, 137401 (2003)

    Article  ADS  Google Scholar 

  7. Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999)

    Article  ADS  Google Scholar 

  8. Wiltshire, M. C. K. et al. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science 291, 849–851 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Pendry, J. B. & O'Brien, S. Magnetic activity at infrared frequencies in structured photonic crystals. J. Phys. Condens. Matter 14, 6383–6394 (2002)

    Article  ADS  Google Scholar 

  10. Yen, T. J. et al. Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Linden, S. et al. Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Landau, L. D. & Lifshitz, E. M. Electrodynamics of Continuous Media Section 60 (Oxford, Pergamon, 1960)

    Google Scholar 

  13. Dimmock, J. O. Losses in left-handed materials. Opt. Express 11, 2397–2402 (2003)

    Article  ADS  Google Scholar 

  14. Panina, L. V., Grigorenko, A. N. & Makhnovskiy, D. P. Metal-dielectric medium with conducting nanoelements. Phys. Rev. B 66, 155411 (2002)

    Article  ADS  Google Scholar 

  15. Podolskiy, V. A., Sarychev, A. K. & Shalaev, V. M. Plasmon modes in metal nanowires and left-handed materials. J. Nonlinear Opt. Phys. Mater. 11, 65–74 (2002)

    Article  ADS  Google Scholar 

  16. Prokhorov, A. M. Molecular amplifier and generator for submillimeter waves. Zh. Eksp. Teor. Fiz. 34, 1658–1659 (1958)

    Google Scholar 

  17. Schawlow, A. L. & Townes, C. H. Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958)

    Article  ADS  CAS  Google Scholar 

  18. Aizpurua, J. et al. Optical properties of gold nanorings. Phys. Rev. Lett. 90, 057401 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Jin, R. et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487–490 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Barron, L. D. Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, Cambridge, UK, 1982)

    Google Scholar 

  21. Kottmann, J. P. & Martin, O. J. F. Plasmon resonant coupling in metallic nanowires. Opt. Express 8, 655–663 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Plasmon-assisted transmission of entangled photons. Nature 391, 667–669 (1998)

    Article  ADS  CAS  Google Scholar 

  23. Felidj, N. et al. Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays. Phys. Rev. B 66, 245407 (2002)

    Article  ADS  Google Scholar 

  24. Mock, J. J., Smith, D. R. & Schultz, S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett. 3, 485–491 (2003)

    Article  ADS  CAS  Google Scholar 

  25. Born, M. & Wolf, E. Principles of Optics Section 2.3 (Cambridge Univ. Press, Cambridge, UK, 1980)

    Google Scholar 

  26. Abeles, F. in Physics of Thin Films Vol. 6 (eds Francombe, M. H. & Hoffman, R. W.) Ch. V–VII (Academic, New York, 1971)

    Google Scholar 

  27. Gademann, A., Durkan, C. & Shvets, I. V. Optical impedance matching with near-field optical microscopy. J. Phys. D 36, 2193–2197 (2003)

    Article  ADS  CAS  Google Scholar 

Download references


This research was supported by EPSRC (UK). We thank L. Panina and D. Makhnovskiy for discussions, and N. Roberts for collaboration in experiments. A.A.F. acknowledges support from INTAS.

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. N. Grigorenko.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains a description of visible-light impedance matching observed in our experiments and a procedure of modelling of reflection spectra using Fresnel coefficients. Supplementary Figure 1 demonstrates the effect of impedance matching. Supplementary Figure 2 shows an agreement between the measured reflection spectra and the spectra calculated with the help of Fresnel coefficients. (PDF 331 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grigorenko, A., Geim, A., Gleeson, H. et al. Nanofabricated media with negative permeability at visible frequencies. Nature 438, 335–338 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing