Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two-dimensional gas of massless Dirac fermions in graphene


Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry1,2,3. The ideas underlying quantum electrodynamics also influence the theory of condensed matter4,5, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrödinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon6,7) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective ‘speed of light’ c* ≈ 106 m s-1. Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass mc of massless carriers in graphene is described by E = mcc*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electric field effect in graphene.
Figure 2: Quantum oscillations in graphene.
Figure 3: Dirac fermions of graphene.
Figure 4: QHE for massless Dirac fermions.

Similar content being viewed by others


  1. Rose, M. E. Relativistic Electron Theory (Wiley, New York, 1961)

    MATH  Google Scholar 

  2. Berestetskii, V. B., Lifshitz, E. M. & Pitaevskii, L. P. Relativistic Quantum Theory (Pergamon, Oxford, 1971)

    Google Scholar 

  3. Lai, D. Matter in strong magnetic fields. Rev. Mod. Phys. 73, 629–662 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Fradkin, E. Field Theories of Condensed Matter Systems (Westview, Oxford, 1997)

    MATH  Google Scholar 

  5. Volovik, G. E. The Universe in a Helium Droplet (Clarendon, Oxford, 2003)

    MATH  Google Scholar 

  6. Novoselov, K. S. et al. Two dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Zhang, Y., Small, J. P., Amori, M. E. S. & Kim, P. Electric field modulation of galvanomagnetic properties of mesoscopic graphite. Phys. Rev. Lett. 94, 176803 (2005)

    Article  ADS  Google Scholar 

  9. Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004)

    Article  CAS  Google Scholar 

  10. Bunch, J. S., Yaish, Y., Brink, M., Bolotin, K. & McEuen, P. L. Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots. Nano Lett. 5, 287–290 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. In Phys. 51, 1–186 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Brandt, N. B., Chudinov, S. M. & Ponomarev, Y. G. Semimetals 1: Graphite and Its Compounds (North-Holland, Amsterdam, 1988)

    Google Scholar 

  13. Vonsovsky, S. V. & Katsnelson, M. I. Quantum Solid State Physics (Springer, New York, 1989)

    Book  Google Scholar 

  14. Gusynin, V. P. & Sharapov, S. G. Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations. Phys. Rev. B 71, 125124 (2005)

    Article  ADS  Google Scholar 

  15. Gusynin, V. P. & Sharapov, S. G. Unconventional integer quantum Hall effect in grapheme. Preprint at (2005).

  16. Peres, N. M. R., Guinea, F. & Castro Neto, A. H. Electronic properties of two-dimensional carbon. Preprint at (2005).

  17. Zheng, Y. & Ando, T. Hall conductivity of a two-dimensional graphite system. Phys. Rev. B 65, 245420 (2002)

    Article  ADS  Google Scholar 

  18. Kaku, M. Introduction to Superstrings (Springer, New York, 1988)

    Book  Google Scholar 

  19. Nakahara, M. Geometry, Topology and Physics (IOP, Bristol, 1990)

    Book  Google Scholar 

  20. Mikitik, G. P. & Sharlai, Yu. V. Manifestation of Berry's phase in metal physics. Phys. Rev. Lett. 82, 2147–2150 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Luk'yanchuk, I. A. & Kopelevich, Y. Phase analysis of quantum oscillations in graphite. Phys. Rev. Lett. 93, 166402 (2004)

    Article  ADS  Google Scholar 

  22. Abrahams, E., Anderson, P. W., Licciardello, D. C. & Ramakrishnan, T. V. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979)

    Article  ADS  Google Scholar 

  23. Fradkin, E. Critical behaviour of disordered degenerate semiconductors. Phys. Rev. B 33, 3263–3268 (1986)

    Article  ADS  CAS  Google Scholar 

  24. Lee, P. A. Localized states in a d-wave superconductor. Phys. Rev. Lett. 71, 1887–1890 (1993)

    Article  ADS  CAS  Google Scholar 

  25. Ziegler, K. Delocalization of 2D Dirac fermions: The role of a broken symmetry. Phys. Rev. Lett. 80, 3113–3116 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Mott, N. F. & Davis, E. A. Electron Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979)

    Google Scholar 

  27. Morita, Y. & Hatsugai, Y. Near critical states of random Dirac fermions. Phys. Rev. Lett. 79, 3728–3731 (1997)

    Article  ADS  CAS  Google Scholar 

  28. Nersesyan, A. A., Tsvelik, A. M. & Wenger, F. Disorder effects in two-dimensional d-wave superconductors. Phys. Rev. Lett. 72, 2628–2631 (1997)

    Article  ADS  Google Scholar 

Download references


We thank L. Glazman, V. Falko, S. Sharapov and A. Castro Neto for discussions. K.S.N. was supported by Leverhulme Trust. S.V.M., S.V.D. and A.A.F. acknowledge support from the Russian Academy of Science and INTAS. This research was funded by the EPSRC (UK).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to K. S. Novoselov or A. K. Geim.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novoselov, K., Geim, A., Morozov, S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing