Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy


Much progress has been made in our understanding of water molecule reactions on surfaces1, proton solvation in gas-phase water clusters2,3 and proton transfer through liquids4. Compared with our advanced understanding of these physico-chemical systems, much less is known about individual water molecules and their cooperative behaviour in heterogeneous proteins during enzymatic reactions. Here we use time-resolved Fourier transform infrared5 spectroscopy (trFTIR) and in situ H218O/H216O exchange FTIR to determine how the membrane protein bacteriorhodopsin6 uses the interplay among strongly hydrogen-bonded water molecules, a water molecule with a dangling hydroxyl group and a protonated water cluster7 to transfer protons. The precise arrangement of water molecules in the protein matrix results in a controlled Grotthuss proton transfer, in contrast to the random proton migration that occurs in liquid water. Our findings support the emerging paradigm that intraprotein water molecules are as essential for biological functions as amino acids.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structure and proton transfer steps of bacteriorhodopsin.
Figure 2: FTIR measurements of the internal water molecules of bacteriorhodopsin.
Figure 3: Proton transfer via protein internal bound water molecules in the extracellular region of bacteriorhodopsin as derived from the FTIR data.


  1. Marx, D. Throwing tetrahedral dice. Science 303, 634–636 (2004)

    CAS  Article  Google Scholar 

  2. Zwier, T. S. The structure of protonated water clusters. Science 304, 1119–1120 (2004)

    CAS  Article  ADS  Google Scholar 

  3. Headrick, J. M. et al. Spectral signatures of hydrated proton vibrations in water clusters. Science 308, 1765–1769 (2005)

    CAS  Article  ADS  Google Scholar 

  4. Marx, D., Tuckerman, M. E., Hutter, J. & Parrinello, M. The nature of the hydrated excess proton in water. Nature 397, 601–604 (1999)

    CAS  Article  ADS  Google Scholar 

  5. Kötting, C. & Gerwert, K. Proteins in action monitored by time-resolved FTIR spectroscopy. Chem. Phys. Chem. 6, 881–888 (2005)

    Article  Google Scholar 

  6. Lanyi, J. K. Bacteriorhodopsin. Annu. Rev. Physiol. 66, 665–688 (2004)

    CAS  Article  Google Scholar 

  7. Garczarek, F., Brown, L. S., Lanyi, J. K. & Gerwert, K. Proton binding within a membrane protein by a protonated water cluster. Proc. Natl Acad. Sci. USA 102, 3633–3638 (2005)

    CAS  Article  ADS  Google Scholar 

  8. de Grotthuss, C. J. T. Sur la décomposition de l'eau et des corps quélletient en dissolution à l'aide de l'électricité galvanique. Ann. Chim. 58, 54–74 (1806)

    Google Scholar 

  9. Eigen, M. Proton transfer, acid-base catalysis, and enzymatic hydrolysis. Part I: Elementary processes. Angew. Chem. Int. Edn Engl. 3, 1–19 (1964)

    Article  Google Scholar 

  10. Zundel, G. in The Hydrogen Bond—Recent Developments in Theory and Experiments (ed. Sandorfy, C.) 683–766 (Nort-Holland, Amsterdam, 1976)

    Google Scholar 

  11. Birge, R. R. et al. Revised assignment of energy storage in the primary photochemical event in bacteriorhodopsin. J. Am. Chem. Soc. 113, 4327–4328 (1991)

    CAS  Article  Google Scholar 

  12. Gerwert, K., Hess, B., Soppa, J. & Oesterhelt, D. Role of aspartate-96 in proton translocation by bacteriorhodopsin. Proc. Natl Acad. Sci. USA 86, 4943–4947 (1989)

    CAS  Article  ADS  Google Scholar 

  13. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P. & Lanyi, J. K. Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291, 899–911 (1999)

    CAS  Article  Google Scholar 

  14. Kandt, C., Schlitter, J. & Gerwert, K. Dynamics of water molecules in the bacteriorhodopsin trimer in explicit lipid/water environment. Biophys. J. 86, 705–717 (2004)

    CAS  Article  ADS  Google Scholar 

  15. Rammelsberg, R., Huhn, G., Lubben, M. & Gerwert, K. Bacteriorhodopsins intramolecular proton-release pathway consists of a hydrogen-bonded network. Biochemistry 37, 5001–5009 (1998)

    CAS  Article  Google Scholar 

  16. Dioumaev, A. K. et al. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface. Biochemistry 37, 2496–2506 (1998)

    CAS  Article  Google Scholar 

  17. Shibata, M. & Kandori, H. FTIR studies of internal water molecules in the Schiff base region of bacteriorhodopsin. Biochemistry 44, 7406–7413 (2005)

    CAS  Article  Google Scholar 

  18. Hayashi, S. & Ohmine, I. Proton transfer in bacteriorhodopsin: Structure, excitation, IR spectra, and potential energy surface analyses by an ab initio QM/MM method. J. Phys. Chem. B 104, 10678–10691 (2000)

    CAS  Article  Google Scholar 

  19. Liu, K., Brown, M. G., Cruzan, J. D. & Saykally, R. J. Vibration-rotation tunneling spectra of the water pentamer: Structure and dynamics. Science 271, 62–64 (1996)

    CAS  Article  ADS  Google Scholar 

  20. Dencher, N. A., Sass, H. J., Buldt, G. Water and bacteriorhodopsin: structure, dynamics, and function. Biochim. Biophys. Acta 1460, 192–203 (2000)

    CAS  Article  Google Scholar 

  21. Grudinin, S., Buldt, G., Gordeliy, V. & Baumgaertner, A. Water molecules and hydrogen-bonded networks in bacteriorhodopsin—molecular dynamics simulations of the ground state and the M intermediate. Biophys. J. 88, 3252–3261 (2005)

    CAS  Article  Google Scholar 

  22. Le Coutre, J., Tittor, J., Oesterhelt, D. & Gerwert, K. Experimental evidence for hydrogen-bonded network proton transfer in bacteriorhodopsin shown by Fourier-transform infrared spectroscopy using azide as catalyst. Proc. Natl Acad. Sci. USA 92, 4962–4966 (1995)

    CAS  Article  ADS  Google Scholar 

  23. Garczarek, F., Wang, J., El-Sayed, M. A. & Gerwert, K. The assignment of the different infrared continuum absorbance changes observed in the 3000–1800 cm-1 region during the bacteriorhodopsin photocycle. Biophys. J. 87, 2676–2682 (2004)

    CAS  Article  ADS  Google Scholar 

  24. Hayashi, S., Tajkhorshid, E., Kandori, H. & Schulten, K. Role of hydrogen-bond network in energy storage of bacteriorhodopsin's light-driven proton pump revealed by ab initio normal-mode analysis. J. Am. Chem. Soc. 126, 10516–10517 (2004)

    CAS  Article  Google Scholar 

  25. Tanimoto, T., Furutani, Y. & Kandori, H. Structural changes of water in the Schiff base region of bacteriorhodopsin: proposal of a hydration switch models. Biochemistry 42, 2300–2306 (2003)

    CAS  Article  Google Scholar 

  26. Rozenberg, M., Loewenschuss, A. & Marcus, Y. An empirical correlation between stretching vibration redshift and hydrogen bond length. Phys. Chem. Chem. Phys. 2, 2699–2702 (2000)

    CAS  Article  Google Scholar 

  27. Rousseau, R., Kleinschmidt, V., Schmitt, U. W. & Marx, D. Unravelling water network protonation patterns in bacteriorhodopsin by theoretical IR spectroscopy. Angew. Chem. Int. Edn Engl. 43, 4804–4807 (2004)

    CAS  Article  Google Scholar 

  28. Spassov, V. Z., Luecke, H., Gerwert, K. & Bashford, D. pKa calculations suggest storage of an excess proton in a hydrogen-bonded water network in bacteriorhodopsin. J. Mol. Biol. 312, 203–219 (2001)

    CAS  Article  Google Scholar 

  29. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P. & Lanyi, J. K. Structural changes in bacteriorhodopsin during ion transport at 2 Å resolution. Science 286, 255–260 (1999)

    CAS  Article  Google Scholar 

  30. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996)

    CAS  Article  Google Scholar 

Download references


We thank A. Hartz for protein preparation; E. Hofmann and C. Kandt for help with figure preparation; and R. S. Goody and D. Rumschitzki for help with English. This work was funded by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Klaus Gerwert.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garczarek, F., Gerwert, K. Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439, 109–112 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing