Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Helium solubility in olivine and implications for high 3He/4He in ocean island basalts


High 3He/4He ratios found in ocean island basalts are the main evidence for the existence of an undegassed mantle reservoir1,2,3. However, models of helium isotope evolution depend critically on the chemical behaviour of helium during mantle melting. It is generally assumed that helium is strongly enriched in mantle melts relative to uranium and thorium, yet estimates of helium partitioning in mantle minerals have produced conflicting results4,5,6. Here we present experimental measurements of helium solubility in olivine at atmospheric pressure. Natural and synthetic olivines were equilibrated with a 50% helium atmosphere and analysed by crushing in vacuo followed by melting, and yield a minimum olivine–melt partition coefficient of 0.0025 ± 0.0005 (s.d.) and a maximum of 0.0060 ± 0.0007 (s.d.). The results indicate that helium might be more compatible than uranium and thorium during mantle melting and that high 3He/4He ratios can be preserved in depleted residues of melting. A depleted source for high 3He/4He ocean island basalts would resolve the apparent discrepancy7 in the relative helium concentrations of ocean island and mid-ocean-ridge basalts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Age versus He isotope ratios for two different helium isotopic evolution models.
Figure 2: Plot of helium content of experimental olivines against the calculated olivine–melt D He for the data of ref.4 (filled diamonds) and the present study (filled triangles).
Figure 3: Helium released from experimental olivine grains during crushing and melting.
Figure 4: Partition coefficients for U (squares), Th (circles) and He (filled circles and field) relevant to mantle melting.

Similar content being viewed by others


  1. Kurz, M. D., Jenkins, W. J. & Hart, S. R. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297, 43–47 (1982)

    Article  ADS  CAS  Google Scholar 

  2. Moreira, M., Doucet, S., Madureira, P. M., Lecomte, A. & Allègre, C. J. Helium-neon systematics in OIB and the nature of the source of mantle plumes. Geochim. Cosmochim. Acta 68, A283 (2004)

    Google Scholar 

  3. Allegre, C. J., Staudacher, T., Sarda, P. & Kurz, M. Constraints on the evolution of the Earth's mantle from rare-gas systematics. Nature 303, 762–766 (1983)

    Article  ADS  CAS  Google Scholar 

  4. Hiyagon, H. & Ozima, M. Partition of noble-gases between olivine and basalt melt. Geochim. Cosmochim. Acta 50, 2045–2057 (1986)

    Article  ADS  CAS  Google Scholar 

  5. Brooker, R. A., Heber, V., Kelley, S. P. & Wood, B. J. Noble gas partitioning behaviour during mantle melting: a possible explanation for ‘the He paradox’? EOS 84, Abstract V31F–03 (2003)

  6. Marty, B. & Lussiez, P. Constraints on rare-gas partition-coefficients from analysis of olivine glass from a picritic midocean ridge basalt. Chem. Geol. 106, 1–7 (1993)

    Article  ADS  CAS  Google Scholar 

  7. Anderson, D. L. The helium paradoxes. Proc. Natl Acad. Sci. USA 95, 4822–4827 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Graham, D. W. in Noble Gases in Geochemistry and Cosmochemistry (eds Porcelli, D., Ballentine, C. J. & Wieler, R.) 247–317 (The Mineralogical Society of America, Washington DC, 2002)

    Book  Google Scholar 

  9. Kurz, M. D. Mantle heterogeneity beneath oceanic islands—some inferences from isotopes. Phil. Trans. R. Soc. Lond. A 342, 91–103 (1993)

    Article  ADS  CAS  Google Scholar 

  10. Meibom, A. et al. Are high He-3/He-4 ratios in oceanic basalts an indicator of deep-mantle plume components? Earth Planet. Sci. Lett. 208, 197–204 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Yamamato, J. & Burnard, P. G. Solubility controlled noble gas fractionation during magmatic degassing: implications for noble gas compositions of primary melts of OIB and MORB. Geochim. Cosmochim. Acta 69, 727–734 (2005)

    Article  ADS  Google Scholar 

  12. Honda, M. & Patterson, D. B. Systematic elemental fractionation of mantle-derived helium, neon, and argon in mid-oceanic ridge glasses. Geochim. Cosmochim. Acta 63, 2863–2874 (1999)

    Article  ADS  CAS  Google Scholar 

  13. Workman, R. K. et al. Recycled metasomatized lithosphere as the origin of the enriched mantle II (EM2) end-member: evidence from the Samoan volcanic chain. Geochem. Geophys. Geosyst. 5, doi:10.1029/2003GC000623 (2004)

  14. Burnard, P. G., Graham, D. W. & Farley, K. A. Mechanisms of magmatic gas loss along the Southeast Indian Ridge and the Amsterdam–St. Paul Plateau. Earth Planet. Sci. Lett. 203, 131–148 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Broadhurst, C. L., Drake, M. J., Hagee, B. E. & Bernatowicz, T. J. Solubility and Partitioning of Ne, Ar, Kr, and Xe in minerals and synthetic basaltic melts. Geochim. Cosmochim. Acta 56, 709–723 (1992)

    Article  ADS  CAS  Google Scholar 

  16. Lux, G. The behaviour of noble-gases in silicate liquids—solution, diffusion, bubbles and surface effects, with applications to natural samples. Geochim. Cosmochim. Acta 51, 1549–1560 (1987)

    Article  ADS  CAS  Google Scholar 

  17. Jambon, A., Weber, H. & Braun, O. Solubility of He, Ne, Ar, Kr and Xe in a basalt melt in the range 1250–1600 degrees C. Geochim. Cosmochim. Acta 50, 401–408 (1986)

    Article  ADS  CAS  Google Scholar 

  18. Kurz, M. D., Curtice, J., Lott, D. E. & Solow, A. Rapid helium isotopic variability in Mauna Kea shield lavas from the Hawaiian Scientific Drilling Project. Geochem. Geophys. Geosyst. 5, doi:10.1029/2002GC000439 (2004)

  19. Yokochi, R., Marty, B., Pik, R. & Burnard, P. High 3He/4He ratios in peridotite xenoliths from SW Japan revisited: Evidence for cosmogenic 3He released by vacuum crushing. Geochem. Geophys. Geosyst. 6, doi:10.1029/2004GC000836 (2005)

  20. Nakamura, A. & Schmalzried, H. On the nonstoichiometry and point-defects of olivine. Phys. Chem. Miner. 10, 27–37 (1983)

    Article  ADS  CAS  Google Scholar 

  21. Brooker, R. A. et al. The ‘zero charge’ partitioning behaviour of noble gases during mantle melting. Nature 423, 738–741 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Baker, M. B. & Stolper, E. M. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim. Cosmochim. Acta 58, 2811–2827 (1994)

    Article  ADS  CAS  Google Scholar 

  23. Dick, H. J. B., Fisher, R. L. & Bryan, W. B. Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth Planet. Sci. Lett. 69, 88–106 (1984)

    Article  ADS  CAS  Google Scholar 

  24. Gill, J. B. Orogenic Andesites and Plate Tectonics (Springer, New York, 1981)

    Book  Google Scholar 

  25. Boyet, M. & Carlson, R. W. 142Nd evidence for early (> 4.53 Ga) global differentiation of the Silicate Earth. Science (in the press) (2005)

  26. Class, C. & Goldstein, S. L. Evolution of helium isotopes in the Earth's mantle. Nature 436, 1107–1112 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Trull, T. W. & Kurz, M. D. Experimental measurements of He-3 and He-4 mobility in olivine and clinopyroxene at magmatic temperatures. Geochim. Cosmochim. Acta 57, 1313–1324 (1993)

    Article  ADS  CAS  Google Scholar 

  28. Dunai, T. J. & Baur, H. Helium, neon, and argon systematics of the European subcontinental mantle—implications for its geochemical evolution. Geochim. Cosmochim. Acta 59, 2767–2783 (1995)

    Article  ADS  CAS  Google Scholar 

  29. Landwehr, D., Blundy, J., Chamorro-Perez, E. M., Hill, E. & Wood, B. U-series disequilibria generated by partial melting of spinel lherzolite. Earth Planet. Sci. Lett. 188, 329–348 (2001)

    Article  ADS  CAS  Google Scholar 

  30. Stuart, F. M., Lass-Evans, S., Fitton, J. G. & Ellam, R. M. High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424, 57–59 (2003)

    Article  ADS  CAS  Google Scholar 

Download references


We thank J. Curtice for his long labours with the He analyses, and J. van Orman for assistance in the early planning and execution of the project. This research was supported by the NSF. Author Contributions S.W.P. and T.L.G. performed the experiments and microscopic observations. M.D.K. performed the He analysis. S.R.H. contributed to experimental and analytical design. All authors contributed to data analysis.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stephen W. Parman.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

This table contains the run conditions of the experiments reported in the paper. (DOC 30 kb)

Supplementary Table 2

This table contains the analyses of the experiments. (DOC 88 kb)

Supplementary Table 3

This table contains the references used to calculate the average partition coefficients shown in Figure 4. (DOC 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parman, S., Kurz, M., Hart, S. et al. Helium solubility in olivine and implications for high 3He/4He in ocean island basalts. Nature 437, 1140–1143 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing