Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strong quantum-confined Stark effect in germanium quantum-well structures on silicon

Abstract

Silicon is the dominant semiconductor for electronics, but there is now a growing need to integrate such components with optoelectronics for telecommunications and computer interconnections1. Silicon-based optical modulators have recently been successfully demonstrated2,3; but because the light modulation mechanisms in silicon4 are relatively weak, long (for example, several millimetres) devices2 or sophisticated high-quality-factor resonators3 have been necessary. Thin quantum-well structures made from III-V semiconductors such as GaAs, InP and their alloys exhibit the much stronger quantum-confined Stark effect (QCSE) mechanism5, which allows modulator structures with only micrometres of optical path length6,7. Such III-V materials are unfortunately difficult to integrate with silicon electronic devices. Germanium is routinely integrated with silicon in electronics8, but previous silicon–germanium structures have also not shown strong modulation effects9,10,11,12,13. Here we report the discovery of the QCSE, at room temperature, in thin germanium quantum-well structures grown on silicon. The QCSE here has strengths comparable to that in III-V materials. Its clarity and strength are particularly surprising because germanium is an indirect gap semiconductor; such semiconductors often display much weaker optical effects than direct gap materials (such as the III-V materials typically used for optoelectronics). This discovery is very promising for small, high-speed14, low-power15,16,17 optical output devices fully compatible with silicon electronics manufacture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The bandgap structure of a Ge/SiGe quantum well (not to scale).
Figure 2: Schematic diagram of a p-i-n diode.
Figure 3: Effective absorption coefficient spectra.
Figure 4: Shifts of exciton peaks.

Similar content being viewed by others

References

  1. Miller, D. A. B. Rationale and challenges for optical interconnects to electronic chips. Proc. IEEE 88, 728–749 (2000)

    Article  Google Scholar 

  2. Liu, A. et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 427, 615–618 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005)

    Article  ADS  CAS  Google Scholar 

  4. Soref, R. A. & Bennett, B. R. Electrooptical effects in silicon. IEEE J. Quant. Electron. 23, 123–129 (1987)

    Article  ADS  Google Scholar 

  5. Miller, D. A. B. et al. Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Phys. Rev. Lett. 53, 2173–2176 (1984)

    Article  ADS  CAS  Google Scholar 

  6. Arad, U. et al. Development of a large high-performance 2-D array of GaAs-AlGaAs multiple quantum-well modulators. IEEE Photon. Tech. Lett. 15, 1531–1533 (2003)

    Article  ADS  Google Scholar 

  7. Liu, C. P. et al. Design, fabrication and characterisation of normal-incidence 1.56-µm multiple-quantum-well asymmetric Fabry-Perot modulators for passive picocells. IEICE Trans. Electron. E 86C, 1281–1289 (2003)

    ADS  Google Scholar 

  8. Cressler, J. D. SiGe HBT technology: a new contender for Si-Based RF and microwave circuit applications. IEEE Trans. Microwave Theory Tech. 46, 572–589 (1998)

    Article  ADS  CAS  Google Scholar 

  9. Qasaimeh, O., Bhattacharya, P. & Croke, E. T. SiGe–Si quantum-well electroabsorption modulators. IEEE Photon. Tech. Lett. 10, 807–809 (1998)

    Article  ADS  Google Scholar 

  10. Miyake, Y., Kim, J. Y., Shiraki, Y. & Fukatsu, S. Absence of Stark shift in strained Si1–xGex/Si type-I quantum wells. Appl. Phys. Lett. 68, 2097–2099 (1996)

    Article  ADS  CAS  Google Scholar 

  11. Li, C. et al. Observation of quantum-confined Stark shifts in SiGe/Si type-I multiple quantum wells. J. Appl. Phys. 87, 8195–8197 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Park, J. S., Karunasiri, R. P. G. & Wang, K. L. Observation of large Stark shift in GexSi1–x/Si multiple quantum wells. J. Vac. Sci. Technol. B 8, 217–220 (1990)

    Article  CAS  Google Scholar 

  13. Yakimov, A. I. et al. Stark effect in type-II Ge/Si quantum dots. Phys. Rev. B 67, 125318 (2003)

    Article  ADS  Google Scholar 

  14. Lewen, R., Irmscher, S., Westergren, U., Thylen, L. & Eriksson, U. Segmented transmission-line electroabsorption modulators. J. Lightwave Technol. 22, 172–179 (2004)

    Article  ADS  Google Scholar 

  15. Krishnamoorthy, A. V. & Miller, D. A. B. Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap. IEEE J. Select. Top. Quant. Electron. 2, 55–76 (1996)

    Article  ADS  CAS  Google Scholar 

  16. Kibar, O., Van Blerkom, D. A., Fan, C. & Esener, S. C. Power minimization and technology comparisons for digital free-space optoelectronic interconnections. J. Lightwave Technol. 17, 546–555 (1999)

    Article  ADS  Google Scholar 

  17. Cho, H., Kapur, P. & Saraswat, K. C. Power comparison between high-speed electrical and optical interconnects for interchip communication. J. Lightwave Technol. 22, 2021–2033 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Miller, D. A. B. et al. Electric field dependence of optical absorption near the bandgap of quantum well structures. Phys. Rev. B 32, 1043–1060 (1985)

    Article  ADS  CAS  Google Scholar 

  19. Helman, N. C., Roth, J. E., Bour, D. P., Altug, H. & Miller, D. A. B. Misalignment-tolerant surface-normal low-voltage modulator for optical interconnects. IEEE J. Select. Top. Quant. Electron. 11, 338–342 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Schmitt-Rink, S., Chemla, D. S., Knox, W. H. & Miller, D. A. B. How fast is excitonic electroabsorption? Opt. Lett. 15, 60–62 (1990)

    Article  ADS  CAS  Google Scholar 

  21. Maslov, A. V. & Citrin, D. S. Quantum-well optical modulator at terahertz frequencies. J. Appl. Phys. 93, 10131–10133 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Galdin, S., Dollfus, P., Aubry-Fortuna, V., Hesto, P. & Osten, H. J. Band offset predictions for strained group IV alloys: Si1-x-yGexCy on Si(001) and Si1-xGex on Si1-zGez(001). Semicond. Sci. Technol. 15, 565–572 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Rieger, M. M. & Vogl, P. Electronic-band parameters in strained Si1-xGex alloys on Si1-yGey substrates. Phys. Rev. B 48, 14276–14287 (1993)

    Article  ADS  CAS  Google Scholar 

  24. Schaffler, F. High-mobility Si and Ge structures. Semicond. Sci. Technol. 12, 1515–1549 (1997)

    Article  ADS  CAS  Google Scholar 

  25. Goossen, K. W., Yan, R. H., Cunningham, J. E. & Jan, W. Y. AlxGa1-xAs-AlAs quantum well surface-normal electroabsorption modulators operating at visible wavelengths. Appl. Phys. Lett. 59, 1829–1831 (1991)

    Article  ADS  CAS  Google Scholar 

  26. Crow, G. C. & Abram, R. A. Monte Carlo simulations of hole transport in SiGe and Ge quantum wells. Semicond. Sci. Technol. 15, 7–14 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Dresselhaus, G., Kip, A. F. & Kittel, C. Cyclotron resonance of electrons and holes in silicon and germanium crystals. Phys. Rev. 98, 368–384 (1955)

    Article  ADS  CAS  Google Scholar 

  28. Lawaetz, P. Valence-band parameters in cubic semiconductors. Phys. Rev. B 4, 3460–3467 (1971)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank V. Lordi for help with photocurrent setup. We also thank J. Fu, T. Krishnamohan and X. Yu for help with device fabrication and material characterization. Finally, we thank G. S. Solomon and D. S. Gardner for discussions. This work was supported by Intel Corporation and the DARPA/ARO EPIC programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Hsuan Kuo.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, YH., Lee, Y., Ge, Y. et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature 437, 1334–1336 (2005). https://doi.org/10.1038/nature04204

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04204

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing