Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation

Abstract

Signalling by the Wnt family of secreted lipoproteins has essential functions in development and disease1. The canonical Wnt/β-catenin pathway requires a single-span transmembrane receptor, low-density lipoprotein (LDL)-receptor-related protein 6 (LRP6)2,3,4, whose phosphorylation at multiple PPPSP motifs is induced upon stimulation by Wnt and is critical for signal transduction5. The kinase responsible for LRP6 phosphorylation has not been identified. Here we provide biochemical and genetic evidence for a ‘dual-kinase’ mechanism for LRP6 phosphorylation and activation. Glycogen synthase kinase 3 (GSK3), which is known for its inhibitory role in Wnt signalling through the promotion of β-catenin phosphorylation and degradation, mediates the phosphorylation and activation of LRP6. We show that Wnt induces sequential phosphorylation of LRP6 by GSK3 and casein kinase 1, and this dual phosphorylation promotes the engagement of LRP6 with the scaffolding protein Axin. We show further that a membrane-associated form of GSK3, in contrast with cytosolic GSK3, stimulates Wnt signalling and Xenopus axis duplication. Our results identify two key kinases mediating Wnt co-receptor activation, reveal an unexpected and intricate logic of Wnt/β-catenin signalling, and illustrate GSK3 as a genuine switch that dictates both on and off states of a pivotal regulatory pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GSK3 involvement in PPPSP phosphorylation.
Figure 2: Sequential phosphorylation of the PPPSPxS motif is induced by Wnt3a and required for LRP6 signalling.
Figure 3: Site I and site II phosphorylation by GSK3 and CK1 promotes LRP6 recruitment of Axin.
Figure 4: Membrane-associated GSK3 phosphorylates LRP6 and activates LRP6 and TCF/β-catenin signalling.

Similar content being viewed by others

References

  1. Logan, C. Y. & Nusse, R. The Wnt signalling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. Pinson, K. I., Brennan, J., Monkley, S., Avery, B. J. & Skarnes, W. C. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407, 535–538 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Tamai, K. et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 407, 530–535 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Wehrli, M. et al. arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407, 527–530 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Tamai, K. et al. A mechanism for Wnt coreceptor activation. Mol. Cell 13, 149–156 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. He, X., Semenov, M., Tamai, K. & Zeng, X. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signalling: arrows point the way. Development 131, 1663–1677 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. Liu, C. et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837–847 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. Amit, S. et al. Axin-mediated CKI phosphorylation of β-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev. 16, 1066–1076 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yanagawa, S. et al. Casein kinase I phosphorylates the Armadillo protein and induces its degradation in Drosophila. EMBO J. 21, 1733–1742 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Semenov, M. V. et al. Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr. Biol. 11, 951–961 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. Tolwinski, N. S. et al. Wg/Wnt signal can be transmitted through arrow/LRP5,6 and Axin independently of Zw3/Gsk3β activity. Dev. Cell 4, 407–418 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. Cong, F., Schweizer, L. & Varmus, H. Wnt signals across the plasma membrane to activate the beta-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development 131, 5103–5115 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. Brennan, K., Gonzalez-Sancho, J. M., Castelo-Soccio, L. A., Howe, L. R. & Brown, A. M. Truncated mutants of the putative Wnt receptor LRP6/Arrow can stabilize β-catenin independently of Frizzled proteins. Oncogene 23, 4873–4884 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mao, J. et al. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signalling pathway. Mol. Cell 7, 801–809 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. Obenauer, J. C., Cantley, L. C. & Yaffe, M. B. Scansite 2.0: Proteome-wide prediction of cell signalling interactions using short sequence motifs. Nucleic Acids Res. 31, 3635–3641 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Coghlan, M. P. et al. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem. Biol. 7, 793–803 (2000)

    Article  CAS  PubMed  Google Scholar 

  17. Doble, B. W. & Woodgett, J. R. GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116, 1175–1186 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. Frame, S., Cohen, P. & Biondi, R. M. A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol. Cell 7, 1321–1327 (2001)

    Article  CAS  PubMed  Google Scholar 

  19. Dajani, R. et al. Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell 105, 721–732 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. ter Haar, E. et al. Structure of GSK3β reveals a primed phosphorylation mechanism. Nature Struct. Biol. 8, 593–596 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. Hagen, T., Di Daniel, E., Culbert, A. A. & Reith, A. D. Expression and characterization of GSK-3 mutants and their effect on β-catenin phosphorylation in intact cells. J. Biol. Chem. 277, 23330–23335 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. Marin, O. et al. A noncanonical sequence phosphorylated by casein kinase 1 in β-catenin may play a role in casein kinase 1 targeting of important signalling proteins. Proc. Natl Acad. Sci. USA 100, 10193–10200 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peters, J. M., McKay, R. M., McKay, J. P. & Graff, J. M. Casein kinase I transduces Wnt signals. Nature 401, 345–350 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Sakanaka, C., Leong, P., Xu, L., Harrison, S. D. & Williams, L. T. Casein kinase Iɛ in the Wnt pathway: regulation of β-catenin function. Proc. Natl Acad. Sci. USA 96, 12548–12552 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. McKay, R. M., Peters, J. M. & Graff, J. M. The casein kinase I family in Wnt signalling. Dev. Biol. 235, 388–396 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. Cliffe, A., Hamada, F. & Bienz, M. A role of Dishevelled in relocating Axin to the plasma membrane during Wingless signalling. Curr. Biol. 13, 960–966 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. Ruel, L., Pantesco, V., Lutz, Y., Simpson, P. & Bourouis, M. Functional significance of a family of protein kinases encoded at the shaggy locus in Drosophila. EMBO J. 12, 1657–1669 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jia, J., Tong, C., Wang, B., Luo, L. & Jiang, J. Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature 432, 1045–1050 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Zhang, C., Williams, E. H., Guo, Y., Lum, L. & Beachy, P. A. Extensive phosphorylation of Smoothened in Hedgehog pathway activation. Proc. Natl Acad. Sci. USA 101, 17900–17907 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Apionishev, S., Katanayeva, N. M., Marks, S. A., Kalderon, D. & Tomlinson, A. Drosophila Smoothened phosphorylation sites essential for Hedgehog signal transduction. Nature Cell Biol. 7, 86–92 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Semenov and B. MacDonald for suggestions and discussion. This work is supported in part by a grant from the NIH to X.H., who is a W. M. Keck Foundation Distinguished Young Scholar and a Leukemia and Lymphoma Society Scholar. X.Z., K.T., H.H. and R.H. are or were in part supported by postdoctoral fellowships from the Children's Hospital Boston, Uehara Memorial Foundation (Japan) and CIHR (Canada), and a training grant from the NIH, respectively. B.D. and J.W. are supported by the CIHR. J.W. is a Howard Hughes Medical Institute International Scholar. H.O. was in part supported by a grant from the NIH to Anjana Rao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi He.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

A PPPSP kinase is associated with GST-LRP6C. (DOC 602 kb)

Supplementary Figure 2

A PPPSP kinase is associated with Axin. (DOC 218 kb)

Supplementary Figure 3

The specificity of Ab1493 for site II. (DOC 319 kb)

Supplementary Figure 4

The specificity of Ab1493 is independent of site I. (DOC 277 kb)

Supplementary Figure 5

Ck1ɛ-/- MEFs. (DOC 89 kb)

Supplementary Methods

Additional details of the methods used in this study. (DOC 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, X., Tamai, K., Doble, B. et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438, 873–877 (2005). https://doi.org/10.1038/nature04185

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04185

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing