Neural measures reveal individual differences in controlling access to working memory


The capacity of visual short-term memory is highly limited, maintaining only three to four objects simultaneously1,2. This extreme limitation necessitates efficient mechanisms to select only the most relevant objects from the immediate environment to be represented in memory and to restrict irrelevant items from consuming capacity3,4,5. Here we report a neurophysiological measure of this memory selection mechanism in humans that gauges an individual's efficiency at excluding irrelevant items from being stored in memory. By examining the moment-by-moment contents of visual memory6, we observe that selection efficiency varies substantially across individuals and is strongly predicted by the particular memory capacity of each person. Specifically, high capacity individuals are much more efficient at representing only the relevant items than are low capacity individuals, who inefficiently encode and maintain information about the irrelevant items present in the display. These results provide evidence that under many circumstances low capacity individuals may actually store more information in memory than high capacity individuals. Indeed, this ancillary allocation of memory capacity to irrelevant objects may be a primary source of putative differences in overall storage capacity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Stimuli and results from experiment 1.
Figure 2: Stimuli and results from experiment 2.
Figure 3: Results from experiment 3.


  1. 1

    Luck, S. J. & Vogel, E. K. The capacity of visual working memory for features and conjunctions. Nature 390, 279–281 (1997)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Sperling, G. The information available in brief visual presentations. Psychol. Monogr. 74, Whole No. 498 (1960)

  3. 3

    Rainer, G., Asaad, W. F. & Miller, E. K. Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature 393, 577–579 (1998)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Bundesen, C., Pedersen, L. F. & Larsen, A. Measuring efficiency of selection from briefly exposed visual displays: a model for partial report. J. Exp. Psychol. Hum. Percept. Perform. 10, 329–339 (1984)

    CAS  Article  Google Scholar 

  5. 5

    Kane, M. J. & Engle, R. W. Working memory capacity and the control of attention: the contributions of goal neglect, response competition, and task set to Stroop interference. J. Exp. Psychol. Gen. 132, 47–70 (2003)

    Article  Google Scholar 

  6. 6

    Vogel, E. K. & Machizawa, M. G. Neural activity predicts individual differences in visual working memory capacity. Nature 428, 748–751 (2004)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Vogel, E. K., Woodman, G. F. & Luck, S. J. Storage of features, conjunctions, and objects in visual working memory. J. Exp. Psychol. Hum. Percept. Perform. 27, 92–114 (2001)

    CAS  Article  Google Scholar 

  8. 8

    Cowan, N. The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav. Brain Sci. 24, 87–185 (2001)

    CAS  Article  Google Scholar 

  9. 9

    Pashler, H. Familiarity and visual change detection. Percept. Psychophys. 44, 369–378 (1988)

    CAS  Article  Google Scholar 

  10. 10

    Rypma, B. & D'Esposito, M. D. The influence of working memory demand and subject performance on prefrontal cortical activity. J. Cogn. Neurosci. 14, 721–731 (2002)

    Article  Google Scholar 

  11. 11

    Rypma, B. & D'Esposito, M. D. Isolating the neural mechanisms of age-related changes in human working memory. Nature Neurosci. 3, 509–515 (2000)

    CAS  Article  Google Scholar 

  12. 12

    Gale, A. & Edwards, J. in Psychophysiology: Systems, Processes, and Applications (eds Coles, M., Donchin, E. & Porges, S. W.) 431–486 (Guilford, New York, 1986)

    Google Scholar 

  13. 13

    Shih, S. & Sperling, G. Is there feature-based attentional selection in visual search? J. Exp. Psychol. Hum. Percept. Perform. 22, 758–779 (1996)

    CAS  Article  Google Scholar 

  14. 14

    Anllo-Vento, L. & Hillyard, S. A. Selective attention to the colour and direction of moving stimuli: Electrophysiological correlates of hierarchical feature selection. Percept. Psychophys. 58, 191–206 (1996)

    CAS  Article  Google Scholar 

  15. 15

    Woodman, G. F. & Vogel, E. K. Fractionating visual working memory: encoding and maintenance are independent processes. Psychol. Sci. 16, 106–113 (2005)

    Article  Google Scholar 

  16. 16

    Jiang, Y. & Kumar, A. Visual short-term memory for two sequential arrays: one representation or two representations? Psychonomic Bull. Rev. 11, 495–500 (2004)

    Article  Google Scholar 

  17. 17

    Miller, E. K., Erickson, C. A. & Desimone, R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16, 5154–5167 (1996)

    CAS  Article  Google Scholar 

  18. 18

    Everling, S., Tinsley, C. J., Gaffan, D. & Duncan, J. Filtering of neural signals by focused attention in the monkey prefrontal cortex. Nature Neurosci. 5, 671–676 (2002)

    CAS  Article  Google Scholar 

  19. 19

    Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995)

    CAS  Article  Google Scholar 

  20. 20

    Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001)

    CAS  Article  Google Scholar 

  21. 21

    Duncan, J. et al. A neural basis for general intelligence. Science 289, 457–460 (2000)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Gray, J. R., Chabris, C. & Braver, T. S. Neural mechanisms of general fluid intelligence. Nature Neurosci. 6, 316–322 (2003)

    CAS  Article  Google Scholar 

  23. 23

    Engle, R. W., Kane, M. J. & Tuholski, S. W. in Models of Working Memory: Mechanisms of Active Maintenance and Executive Control (eds Miyake, A. & Shah, P.) 102–134 (Cambridge Univ. Press, New York, 1999)

    Google Scholar 

  24. 24

    Vogel, E. K., Luck, S. J. & Shapiro, K. L. Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. J. Exp. Psychol. Hum. Percept. Perform. 24, 1656–1674 (1998)

    CAS  Article  Google Scholar 

Download references


This work was supported by grants from the US National Institute of Mental Health and the Oregon Medical Research Foundation.

Author information



Corresponding author

Correspondence to Edward K. Vogel.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vogel, E., McCollough, A. & Machizawa, M. Neural measures reveal individual differences in controlling access to working memory. Nature 438, 500–503 (2005).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing