Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interfaces and the driving force of hydrophobic assembly

Abstract

The hydrophobic effect — the tendency for oil and water to segregate — is important in diverse phenomena, from the cleaning of laundry, to the creation of micro-emulsions to make new materials, to the assembly of proteins into functional complexes. This effect is multifaceted depending on whether hydrophobic molecules are individually hydrated or driven to assemble into larger structures. Despite the basic principles underlying the hydrophobic effect being qualitatively well understood, only recently have theoretical developments begun to explain and quantify many features of this ubiquitous phenomenon.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Configurations of liquid water molecules near hydrophobic cavities in molecular-dynamics simulations.
Figure 2: Solvation free energy, ΔG, for a spherical cavity in water as a function of the cavity size.
Figure 3: The average equilibrium density of water a distance r+R from spherical cavities in liquid water at standard conditions.
Figure 4: The driving force, ΔG, for assembling a cluster of small hydrophobic particles.
Figure 5: Length scales of amphiphiles in dynamic equilibrium with micelles.

References

  1. Safron, S. A. Statistical Thermodynamics of Surfaces, Interfaces and Membranes Ch. 1–3 (Addison-Wesley, Reading, 1994).

    Google Scholar 

  2. Tanford, C. The hydrophobic effect and the organization of living matter. Science 200, 1012–1018 ( 1978).

    Article  ADS  CAS  Google Scholar 

  3. Kauzmann, W. Some forces in the interpretation of protein denaturation. Adv. Prot. Chem. 14, 1–63 ( 1959).

    CAS  Google Scholar 

  4. Tanford, C. & Reynolds, J. Nature's Robots: A History of Proteins Ch. 12 (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

  5. Tanford, C. How protein chemists learned about the hydrophobic factor. Protein Sci. 6, 1358–1366 ( 1997).

    Article  CAS  Google Scholar 

  6. Dixh, S., Crain, J., Pooh, W. C. K., Finney, J. L. & Soper, A. K. Molecular segregation observed in a concentrated alcohol-water solution. Nature 416, 829–832 ( 2002).

    Article  ADS  Google Scholar 

  7. Swope, W. C. & Andersen, H. C. A molecular dynamics method for calculating the solubility of gases in liquids and the hydrophobic hydration of inert gas atoms in aqueous solution. J. Phys. Chem. 88, 6548–6556 ( 1984).

    Article  CAS  Google Scholar 

  8. Pratt, L. R. & Chandler, D. Theory of the hydrophobic effect. J. Chem. Phys. 67, 3683–3704 ( 1977).

    Article  ADS  CAS  Google Scholar 

  9. Pratt, L. R. & Chandler, D. Hydrophobic solvation of nonspherical solutes. J. Chem. Phys. 73, 3430–3433 ( 1980).

    Article  ADS  CAS  Google Scholar 

  10. Pratt, L. R. & Chandler, D. Hydrophobic interactions and osmotic second virial coefficients for methanol in water. J. Solution Chem. 9, 1–17 ( 1980).

    Article  CAS  Google Scholar 

  11. Chandler, D. Introduction to Modern Statistical Mechanics Ch. 3, 5–7 (Oxford Univ. Press, New York, 1987).

    Google Scholar 

  12. Barrat, J. -L. & Hansen, J. -P. Basic Concepts for Simple and Complex Liquids (Cambridge Univ. Press, Cambridge, 2003).

    Book  Google Scholar 

  13. Sharp, K. A., Nicholls, A., Fine, R. & Honig, B. Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science 252, 106–109 ( 1991).

    Article  ADS  CAS  Google Scholar 

  14. Ashbaugh, H. S., Kaler, E. W. & Paulaitis, M. E. A “Universal” surface area correlation for molecular hydrophobic phenomena. J. Am. Chem. Soc. 121, 9243–9244 ( 1999).

    Article  CAS  Google Scholar 

  15. Tanford, C. Interfacial free energy and the hydrophobic effect. Proc. Natl Acad. Sci. USA 76, 4175–4176 ( 1979).

    Article  ADS  CAS  Google Scholar 

  16. Bowron, D. T., Filipponi, A., Roberts, M. A. & Finney, J. L. Hydrophobic hydration and the formation of a clathrate hydrate. Phys. Rev. Lett. 81, 4164–4167 ( 1998).

    Article  ADS  CAS  Google Scholar 

  17. Stillinger, F. H. Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory. J. Solution Chem. 2, 141––158 ( 1973).

    Article  CAS  Google Scholar 

  18. Dill, K. A. & Bromberg, S. Molecular Driving Forces Ch. 16, 30 (Garland Science, New York, 2003).

    Google Scholar 

  19. Murphy, K. P. Hydration and convergence temperatures: on the use and interpretation of correlation plots. Biophys. Chem. 51, 311–326 ( 1994).

    Article  CAS  Google Scholar 

  20. Lum, K., Chandler, D. & Weeks, J. D. Hydrophobicity at small and large length scales. J. Phys. Chem. B 103, 4570–4577 ( 1999).

    Article  CAS  Google Scholar 

  21. Huang, D. M. & Chandler, D. The hydrophobic effect and the influence of solute–solvent attractions. J. Phys. Chem. B 106, 2047–2053 ( 2002).

    Article  CAS  Google Scholar 

  22. Wallqvist, A. & Berne, B. J. Computer simulation of hydrophobic hydration forces on stacked plates at short range. J. Phys. Chem. 99, 2893–2899 ( 1995).

    Article  CAS  Google Scholar 

  23. Gerstein, M. & Lynden-Bell, R. M. Simulation of water around a model protein helix. 1. Two-dimensional projections of solvent structure. J. Phys. Chem. 97, 2982–2990 ( 1993).

    Article  CAS  Google Scholar 

  24. Ashbaugh, H. S. & Paulaitis, M. E. Effect of solute size and solute-water attractive interactions on hydration water structure around hydrophobic solutes. J. Am. Chem. Soc. 123, 10721–10728 ( 2001).

    Article  CAS  Google Scholar 

  25. Huang, D. M., Geissler, P. L. & Chandler, D. Scaling of hydrophobic free energies. J. Phys. Chem. B 105, 6704–6709 ( 2001).

    Article  CAS  Google Scholar 

  26. Lee, C. Y., McCammon, J. A. & Rossky, P. J. The structure of liquid water at an extended hydrophobic surface. J. Chem. Phys. 80, 4448–4455 ( 1984).

    Article  ADS  CAS  Google Scholar 

  27. Rowlinson, J. S. & Widom, B. Molecular Theory of Capillarity Ch. 8 (Oxford Univ, Oxford, 1982).

    Google Scholar 

  28. Smith, R. & Tanford, C. Hydrophobicity of long chain n-alkyl carboxylic acids, as measured by their distribution between heptane and aqueous solutions. Proc. Natl Acad. Sci. USA 70, 289–293 ( 1973).

    Article  ADS  CAS  Google Scholar 

  29. Tanford, C. The Hydrophobic Effect: Formation of Micelles & Biological Membranes Ch. 1–4, 8 (Wiley, New York, 1980).

    Google Scholar 

  30. Raschke, T. M., Tsai, J. & Levitt, M. Quantification of the hydrophobic interaction by simulations of the aggregation of small hydrophobic solutes in water. Proc. Natl Acad. Sci. USA 98, 5965–5969 ( 2001).

    Article  ADS  CAS  Google Scholar 

  31. TenWolde, P. R. & Chandler, D. Drying induced hydrophobic polymer collapse. Proc. Natl Acad. Sci. USA 99, 6539–6543 ( 2002).

    Article  ADS  CAS  Google Scholar 

  32. Chandler, D., Weeks, J. D. & Andersen, H. C. The van der Waals picture of liquids, solids and phase transformations. Science 220, 787–794 ( 1983).

    Article  ADS  CAS  Google Scholar 

  33. Scatena, L. F. & Richmond, G. L. Orientation, hydrogen bonding, and penetration of water at the organic/water interface. J. Phys. Chem. B 105, 11240–11250 ( 2001).

    Article  CAS  Google Scholar 

  34. Ball, P. Chemical physics: how to keep dry in water. Nature 423, 25–26 ( 2003).

    Article  ADS  CAS  Google Scholar 

  35. Jensen, T. R. et al. Water in contact with extended hydrophobic surfaces: Direct evidence of weak dewetting. Phys. Rev. Lett. 90, 086101.1–086101.4 ( 2003).

    Article  ADS  Google Scholar 

  36. Zhang, X., Zhu, Y. & Granick, S. Hydrophobicity at a janus interface. Science 295, 663–666 ( 2002).

    Article  ADS  CAS  Google Scholar 

  37. Larson, R. G. Structure and Rheology of Complex Fluids Ch. 12 (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  38. Maibaum, L., Dinner, A. R. & Chandler, D. Micelle formation and the hydrophobic effect. J. Phys. Chem. B 108, 6778–6781 ( 2004).

    Article  CAS  Google Scholar 

  39. Finney, J. L. Water? What's so special about it? Phil. Trans. R. Soc. Lond. B 359, 1145–1165 ( 2004).

    Article  CAS  Google Scholar 

  40. Tanford, C. Ben Franklin Stilled the Waves Ch. 14 (Oxford Univ. Press, Oxford, 2004).

    Google Scholar 

  41. Huang, D. M. & Chandler, D. Cavity formation and the drying transition in a Lennard-Jones fluid. Phys. Rev. E 61, 1501–1506 ( 2000).

    Article  ADS  CAS  Google Scholar 

  42. Bolhuis, P. G. & Chandler, D. Transition path sampling of cavitation between molecular scale solvophobic surfaces. J. Chem. Phys. 113, 8154–8160 ( 2000).

    Article  ADS  CAS  Google Scholar 

  43. Weeks, J. D. Connecting local structure to interface formation: A molecular scale van der Waals theory of non-uniform liquids. Annu. Rev. Phys. Chem. 53, 533–562 ( 2002).

    Article  ADS  CAS  Google Scholar 

  44. Southall, N. T. & Dill, K. A. The mechanism of hydrophobic solvation depends on solute radius. J. Phys. Chem. B 104, 1326–1331 ( 2003).

    Article  Google Scholar 

  45. Binder, K., Landau, D. P. & Ferrenberg, A. M. Wetting and capillary condensation of lattice gases in thin film geometry. Ber. BunsenGes. Phys. Chem. 98, 340–345 ( 1994).

    Article  CAS  Google Scholar 

  46. Maibaum, L. & Chandler, D. A coarse-grained model of water confined in a hydrophobic tube. J. Phys. Chem. B 107, 1189–1193 ( 2003).

    Article  CAS  Google Scholar 

  47. Smit, B. et al. Computer simulations of a water/oil interface in the presence of micelles. Nature 348, 624–625 ( 1990).

    Article  ADS  CAS  Google Scholar 

  48. Wu, D., Chandler, D. & Smit, B. Electrostatic analogy for surfactant assemblies. J. Phys. Chem. 96, 4077–4083 ( 1992).

    Article  CAS  Google Scholar 

  49. Larson, R. G. Monte Carlo simulation of microstructural transitions in surfactant systems. J. Chem. Phys. 96, 7904–7918 ( 1992).

    Article  ADS  CAS  Google Scholar 

  50. Garde, S., Hummer, G., Garcia, A. E., Paulaitis, M. E. & Pratt, L. R. Origin of entropy convergence in hydrophobic hydration and protein folding. Phys. Rev. Lett. 77, 4966–4968 ( 1998).

    Article  ADS  Google Scholar 

  51. Murphy, K. P., Privalov, P. L. & Gill, S. J. Common features of protein unfolding and dissolution of hydrophobic compounds. Science 247, 559–561 ( 1990).

    Article  ADS  CAS  Google Scholar 

  52. Huang, D. & Chandler, D. Temperature and length scale dependence of hydrophobic effects and their possible implications for protein folding. Proc. Natl Acad. Sci. USA 97, 8324–8327 ( 2000).

    Article  ADS  CAS  Google Scholar 

  53. Baldwin, R. L. Temperature dependence of the hydrophobic interaction in protein folding. Proc. Natl Acad. Sci. USA 83, 8069–8072 ( 1986).

    Article  ADS  CAS  Google Scholar 

  54. Gerstein, M. & Chothia, C. Packing at the protein-water interface. Proc. Natl Acad. Sci. USA 93, 10167–10172 ( 1996).

    Article  ADS  CAS  Google Scholar 

  55. Levy, Y. & Onuchic, J. N. Water and proteins: A love–hate relationship. Proc. Natl Acad. Sci. USA 101, 3325–3326 ( 2004).

    Article  ADS  CAS  Google Scholar 

  56. Rabani, E., Reichman, D. R., Geissler, P. L. & Brus, L. E. Drying-mediated self-assembly of nanoparticles. Nature 426, 271–274 ( 2003).

    Article  ADS  CAS  Google Scholar 

  57. Lum, K. & Chandler, D. Phase diagram and free energies of vapor films and tubes for a confined fluid. Int. J. Thermophys. 19, 845–855 ( 1998).

    Article  CAS  Google Scholar 

  58. Parker, J. L., Claesson, P. M. & Attard, P. Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces. J. Phys. Chem. 98, 8468–8480 ( 1994).

    Article  CAS  Google Scholar 

  59. Frenkel, D. & Smit, B. Understanding Molecular Simulation 2nd edn Ch. 7 (Academic, San Diego, 2002).

    MATH  Google Scholar 

  60. Hummer, G., Garde, S., Garcia, A. E., Pohorille, A. & Pratt, L. R. An information theory model of hydrophobic interactions. Proc. Natl Acad. Sci. USA 93, 8951–8955 ( 1996).

    Article  ADS  CAS  Google Scholar 

  61. Morrison, T. J. & Billett, F. The salting-out of non-electrolytes. Part II. The effect of variation in non-electrolytes. J. Chem. Soc. 3819–3822 ( 1952).

  62. Chandler, D. Gaussian field model of fluids with an application to polymeric fluids. Phys. Rev. E 48, 2898–2905 ( 1993).

    Article  ADS  CAS  Google Scholar 

  63. Silverstein, K. A. T., Haymet, A. D. J. & Dill, K. A. The strength of hydrogen bonds in liquid water and around nonpolar solutes. J. Am. Chem. Soc. 122, 8037–8041 ( 2000).

    Article  CAS  Google Scholar 

  64. Gallagher, K. R. & Sharp, K. A. A new angle on heat capacity changes in hydrophobic solvation. J. Am. Chem. Soc. 125, 9853–9860 ( 2003).

    Article  CAS  Google Scholar 

  65. Gallicchio, E., Kubo, M. M. & Levy, R. M. Enthalpy-entropy and cavity decomposition of alkane hydration free energies: numerical results and implications for theories of hydrophobic solvation. J. Phys. Chem. B. 104, 6271–6285 ( 2000).

    Article  CAS  Google Scholar 

  66. Mackay, D. & Shiu, W. Y. A critical review of Henry's Law constants for chemicals of environmental interest. J. Phys. Chem. Ref. Data 10, 1175–1199 ( 1981).

    Article  ADS  CAS  Google Scholar 

  67. Ben-Naim, B. Hydrophobic Interactions Ch. 3 (Plenum, New York, 1980).

    Book  Google Scholar 

  68. Mackay, D., Shiu, W. Y. & Ma, K. C. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate of Organic Chemicals Vol. III, 117, 170 (CRC Press, Boca Raton, 1993).

    Google Scholar 

Download references

Acknowledgements

My research on hydrophobicity was supported by the National Science Foundation and the US Department of Energy. I thank L. Maibaum for discussions and help in writing this review. I am also indebted to R. Levy and C. Tanford for constructive criticisms of an earlier draft. My choices for references are illustrative, not comprehensive.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Chandler.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Author Information Reprints and permissions informtion is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005). https://doi.org/10.1038/nature04162

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04162

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing