Marine microorganisms and global nutrient cycles

An Erratum to this article was published on 03 November 2005


The way that nutrients cycle through atmospheric, terrestrial, oceanic and associated biotic reservoirs can constrain rates of biological production and help structure ecosystems on land and in the sea. On a global scale, cycling of nutrients also affects the concentration of atmospheric carbon dioxide. Because of their capacity for rapid growth, marine microorganisms are a major component of global nutrient cycles. Understanding what controls their distributions and their diverse suite of nutrient transformations is a major challenge facing contemporary biological oceanographers. What is emerging is an appreciation of the previously unknown degree of complexity within the marine microbial community.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Three different phytoplankton growth strategies and their resulting cellular N:P ratios.
Figure 2: The global ocean balance between N2 fixation and the loss of fixed N through anammox and denitrification.
Figure 3: A breakdown of the three types of resource co-limitation.
Figure 4: Marine N cycle, including losses of ammonium and nitrite as N2 owing to anammox.


  1. 1

    Redfield, A. C. in James Johnstone Memorial Volume (ed. Daniel, R. J.) 176–192 (Liverpool Univ. Press, Liverpool, 1934).

    Google Scholar 

  2. 2

    Fanning, K. A. Influence of atmospheric pollution on nutrient limitation in the ocean. Nature 339, 460–463 (1989).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Kuypers, M. M. M. et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422, 608–611 (2003).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Gruber, N. & Sarmiento, J. L. Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem. Cycles 11, 235–266 (1997).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Quigg, A. et al. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425, 291–294 (2003).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton Univ. Press, Princeton, 2002).

    Google Scholar 

  7. 7

    Klausmeier, C. A., Litchman, E. & Levin, S. A. Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnol. Oceanogr. 49, 1463–1470 (2004).

    ADS  Article  Google Scholar 

  8. 8

    Falkowski, P. G. Rationalizing elemental ratios is unicellular algae. J. Phycol. 16, 3–6 (2000).

    Article  Google Scholar 

  9. 9

    Geider, R. J. & La Roche, J. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37, 1–17 (2002).

    Article  Google Scholar 

  10. 10

    Klausmeier, C. A., Litchman, E., Daufresne, T & Levin, S. A. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429, 171–174 (2004).

    ADS  CAS  Article  Google Scholar 

  11. 11

    LaRoche, J. & Breitbarth, E. Importance of diazotrophs as a source of new nitrogen in the ocean. J. Sea Res. 53, 67–91 (2005).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Dong, Z., Wang, X. & Liu, L. Wind erosion in semiarid China: An overview. J. Soil Water Conserv. 55, 439–444 (2000).

    Google Scholar 

  13. 13

    Pahlow, M. & Riebesell, U. Temporal trends in deep ocean Redfield ratios. Science 287, 831–833 (2000).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J., Manabe, S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245–249 (1998).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Arrigo, K. R. et al. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283, 365–367 (1999).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Smetacek, V. A watery arms race. Nature 411, 745–745 (2001).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Gordon, L. I. et al. Seasonal evolution of hydrographic properties in the Ross Sea, Antarctica, 1996–1997. Deep-Sea Res. II 47, 3095–3117 (2000).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Beman, M., Arrigo, K. R. & Matson, P. A. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 434, 211–214 (2005).

    ADS  Article  Google Scholar 

  20. 20

    Von Liebig, J. Chemistry and its Application to Agriculture and Physiology (Taylor and Walton, London, 1840).

    Google Scholar 

  21. 21

    Bryant, D. A. The beauty in small things revealed. Proc. Natl Acad. Sci. USA 100, 9647–9649 (2003).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Seppala, J., Tamminen, T., & Kaitala, S. Experimental evaluation of nutrient limitation of phytoplankton communities in the Gulf of Riga. J. Mar. Syst. 23, 107–126 (1999).

    ADS  Article  Google Scholar 

  23. 23

    Yin, K., Qian, P. -Y., Chen, J. C., Hsieh, D. P. H. & Harrison, P. J. Dynamics of nutrients and phytoplankton biomass in the Pearl River estuary and adjacent waters of Hong Kong during summer: Preliminary evidence for phosphorus and silicon limitation. Mar. Ecol. Prog. Ser. 194, 295–305 (2000).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Mills, M. M., Ridame, C., Davies, M., La Roche, J. & Geider, R. J. Co-limitation of nitrogen fixation by iron and phosphorus in the Eastern North Atlantic. Nature 429, 292–294 (2004).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Sunda, W. G. & Huntsman, S. A. Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390, 389–392 (1997).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Maldonado, M. T., Boyd, P. W., Harrison, P. J. & Price, N. M. Co-limitation of phytoplankton growth by light and Fe during winter in the NE subarctic Pacific Ocean. Deep-Sea Res. II 46, 2475–2485 (1999).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Timmermans, K. R. et al. Co-limitation by iron and light of Chaetoceros brevis, C. dichaeta and C. calcitrans (Bacillariophyceae). Mar. Ecol. Prog. Ser. 217, 287–297 (2001).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Shaked, Y., Xu, Y, Leblanc, K. & Morel, F. M. M. Zinc availability and alkaline phosphatase activity in Emiliania huxleyi: Implications for Zn-P co-limitation in the ocean. Limnol. Oceanogr. (in the press).

  29. 29

    Dyhrman, S. T. & Palenik, B. Characterization of ectoenzyme activity and phosphate-regulated proteins in the coccolithophorid Emiliania huxleyi. J. Plank. Res. 25, 1215–1225 (2003).

    CAS  Article  Google Scholar 

  30. 30

    Suzumura, M. & Ingall, E. D. Distribution and dynamics of various forms of phosphorus in seawater: Insights from field observations in the Pacific Ocean and a laboratory experiment. Deep-Sea Res. I 51, 1113–1130 (2004).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Karl, D. et al. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388, 533–538 (1997).

    ADS  CAS  Article  Google Scholar 

  32. 32

    Wu, J. F., Sunda, W., Boyle, E. A., & Karl, D. M. Phosphate depletion in the western North Atlantic Ocean. Science 289, 759–762 (2000).

    ADS  CAS  Article  Google Scholar 

  33. 33

    Niemi, A. Blue-green algal blooms and N:P ratios in the Baltic Sea. Acta Bot. Fenn. 110, 57–61 (1979).

    CAS  Google Scholar 

  34. 34

    Capone, D. G. et al. Nitrogen fixation by Trichodesmium spp.: An important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Global Biogeochem. Cycles 19, GB2024, 10.1029/2004GB002331 (2005).

  35. 35

    Michaels, A. F., Bates, N. R., Buesseler, K. O., Carlson, C. A. & Knap, A. H. Carbon-cycle imbalances in the Sargasso Sea. Nature 372, 537–540 (1994).

    ADS  CAS  Article  Google Scholar 

  36. 36

    Capone, D. G. & Carpenter, E. J. Nitrogen fixation in the marine environment. Science 217, 1140–1142 (1982).

    ADS  CAS  Article  Google Scholar 

  37. 37

    Lipschultz, F. & Owens, N. J. P. An assessment of nitrogen fixation as a source of nitrogen to the North Atlantic Ocean. Biogeochemistry 35, 261–274 (1996).

    CAS  Article  Google Scholar 

  38. 38

    Galloway, J. N., Schlesinger, W. H., Levy, H., Michaels, A. & Schnoor, J. L. Nitrogen fixation: Anthropogenic enhancement—environmental response. Global Biogeochem. Cycles 9, 235–252 (1995).

    ADS  CAS  Article  Google Scholar 

  39. 39

    Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B. & Carpenter, E. J. Trichodesmium, a globally significant marine cyanobacterium. Science 276, 1221–1229 (1997).

    CAS  Article  Google Scholar 

  40. 40

    Ganeshram, R. S., Pedersen, T. F., Calvert, S. E. & Francois, R. Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories. Nature 415, 156–159 (2002).

    ADS  CAS  Article  Google Scholar 

  41. 41

    Karl, D. et al. Dinitrogen fixation in the world's oceans. Biogeochemistry 57, 47–98 (2002).

    Article  Google Scholar 

  42. 42

    Michaels, A., Karl, D. & Capone, D. Element stoichiometry, new production and nitrogen fixation. Oceanography 14, 68–77 (2001).

    Article  Google Scholar 

  43. 43

    Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–538 (1999).

    ADS  CAS  Article  Google Scholar 

  44. 44

    Raven, J. A. The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol. 109, 279–287 (1988).

    CAS  Article  Google Scholar 

  45. 45

    Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).

    ADS  CAS  Article  Google Scholar 

  46. 46

    Sanudo-Wilhelmy, S. A. et al. Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Nature 411, 66–69 (2001).

    ADS  CAS  Article  Google Scholar 

  47. 47

    Flynn, K. J. & Hipkin, C. R. Interactions between iron, light, ammonium, and nitrate: Insights from the construction of a dynamic model of algal physiology. J. Phycol. 35, 1171–1190 (1999).

    CAS  Article  Google Scholar 

  48. 48

    Voss, M. Croot, P., Lochte, K., Mills, M. & Peeken, I. Patterns of nitrogen fixation along 10°N in the tropical Atlantic. Geophys. Res. Lett. 31, L23S09 (2004).

    Article  Google Scholar 

  49. 49

    Shriadah, M. A., Okbah, M. A., & El-Deek, M. S. Trace metals in the water columns of the red sea and the gulf of Aqaba, Egypt. Wat. Air Soil Pollut. 153, 115–124 (2004).

    ADS  CAS  Article  Google Scholar 

  50. 50

    Carpenter, E. J., Subramaniam, A. & Capone, D. G. Biomass and primary productivity of the cyanobacterium, Trichodesmium spp., in the southwestern tropical N. Atlantic Ocean. Deep-Sea Res. I 51, 173–203 (2004).

    CAS  Article  Google Scholar 

  51. 51

    Venrick, E. L. The distribution and significance of Richelia intracellularis Schmidt in the North Pacific central gyre. Limnol. Oceanogr. 19, 437–444 (1974).

    ADS  Article  Google Scholar 

  52. 52

    Carpenter, E. J. et al. Extensive bloom of a N2 fixing symbiotic association in the tropical Atlantic Ocean. Mar. Ecol. Prog. Ser. 188, 273–283 (1999).

    ADS  Article  Google Scholar 

  53. 53

    Zehr, J. P. et al. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412, 635–638 (2001).

    ADS  CAS  Article  Google Scholar 

  54. 54

    Zehr, J. P. & Ward, B. B. Nitrogen cycling in the ocean: New perspectives on processes and paradigms. Appl. Env. Microbiol. 68, 1015–1024 (2002).

    CAS  Article  Google Scholar 

  55. 55

    Church, M. J., Jenkins, B. D., Karl, D. M. & Zehr, J. P. Vertical distributions of nitrogen-fixing phylotypes at Stn ALOHA in the oligotrophic North Pacific Ocean. Aquat. Microb. Ecol. 38, 3–14 (2005).

    Article  Google Scholar 

  56. 56

    Montoya, J. P. et al. High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature 430, 1027–1031 (2004).

    ADS  CAS  Article  Google Scholar 

  57. 57

    Hansell, D. A., Bates, N. R. & Olson, D. B. Excess nitrate and nitrogen fixation in the North Atlantic Ocean. Mar. Chem. 84, 243–265 (2004).

    CAS  Article  Google Scholar 

  58. 58

    Dore, J. E., Brum, J. R., Tupas, L. M. & Karl, D. M. Seasonal and interannual variability in sources of nitrogen supporting export in the oligotrophic subtropical North Pacific Ocean. Limnol. Oceanogr. 47, 1595–1607 (2002).

    ADS  CAS  Article  Google Scholar 

  59. 59

    Codispoti, L. A. et al. The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene? Scientia Marina 65 (Suppl. 2), 85–105 (2001).

    CAS  Article  Google Scholar 

  60. 60

    Richards, F. A. in Chemical Oceanography (eds Ripley, J. P. & Skirrow, G.) 611–645 (Academic, London, 1965).

    Google Scholar 

  61. 61

    Mulder, A., van de Graaf, A. A., Robertson, L. A. & Kuenen, J. G. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16, 177–184 (1995).

    CAS  Article  Google Scholar 

  62. 62

    Van de Graaf, A. A. et al. Anaerobic oxidation of ammonium is a biologically mediated process. Appl. Environ. Microbiol. 61, 1246–1251 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Thamdrup, B. & Dalsgaard, T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl. Environ. Microbiol. 68, 1312–1318 (2002).

    CAS  Article  Google Scholar 

  64. 64

    Strous, M. et al. Missing lithotroph identified as new planctomycete. Nature 400, 446–449 (1999).

    ADS  CAS  Article  Google Scholar 

  65. 65

    Dalsgaard, T., Canfield, D. E., Petersen, J., Thamdrup, B. & Acuña-González, J. Anammox is a significant pathway of N2 production in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422, 606–608 (2003).

    ADS  CAS  Article  Google Scholar 

  66. 66

    Sinninghe Damsté, J. S. et al. Linearly concatenated cyclobutane (ladderane) lipids from a dense bacterial membrane. Nature 419, 708–712 (2002).

    ADS  Article  Google Scholar 

  67. 67

    Schmid, M. et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst. Appl. Microbiol. 23, 93–106 (2000).

    CAS  Article  Google Scholar 

  68. 68

    Rysgaard, S. & Glud, R. N. Anaerobic N2 production in Arctic sea ice. Limnol. Oceanogr. 49, 86–94 (2004).

    ADS  CAS  Article  Google Scholar 

  69. 69

    Kuypers, M. M. M. et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc. Natl Acad. Sci. USA 102, 6478–6483 (2005).

    ADS  CAS  Article  Google Scholar 

  70. 70

    Carr, M. E. Estimation of potential productivity in Eastern Boundary Currents using remote sensing. Deep-Sea Res. II 49, 9–80 (2002).

    Google Scholar 

  71. 71

    Tyrrell, T. & Lucas, M. I. Geochemical evidence of denitrification in the Benguela upwelling system. Cont. Shelf Res. 22, 2497–2511 (2002).

    ADS  Article  Google Scholar 

  72. 72

    Devol A. H. Solution to a marine mystery. Nature 422, 575–576 (2003).

    ADS  CAS  Article  Google Scholar 

  73. 73

    Service, R. F. Oceanography—New dead zone off Oregon coast hints at sea change in currents. Science 305, 1099 (2004).

    CAS  Article  Google Scholar 

  74. 74

    Mohan, S. B., Schmid, M., Jetten, M. & Cole, J. Detection and widespread distribution of the nrfA gene encoding nitrite reduction to ammonia, a short circuit in the biological nitrogen cycle that competes with denitrification. FEMS Microbiol. Ecol. 49, 433–443 (2004).

    CAS  Article  Google Scholar 

Download references


I would like to thank S. Rysgaard, T. Dalsgaard, and M. Kuypers for assistance with the anammox section of this manuscript. D. Capone, E. Carpenter, and A. Subramaniam provided valuable insight about N2 fixation. I would like to thank M. Davey and G. Tarran for providing their unpublished flow cytometry data from their North Atlantic work. Thanks also to M. Mills, G. van Dijken, A. Tagliabue, R. Labiosa, T. Reddy, S. Pabi, L. Kropuenske and B. Saenz for comments on earlier drafts of this manuscript.

Author information



Corresponding author

Correspondence to Kevin R. Arrigo.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arrigo, K. Marine microorganisms and global nutrient cycles. Nature 437, 349–355 (2005).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing