Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Principal pathway coupling agonist binding to channel gating in nicotinic receptors

Abstract

Synaptic receptors respond to neurotransmitters by opening an intrinsic ion channel in the final step in synaptic transmission. How binding of the neurotransmitter is conveyed over the long distance to the channel remains a central question in neurobiology. Here we delineate a principal pathway that links neurotransmitter binding to channel gating by using a structural model of the Torpedo acetylcholine receptor at 4-Å resolution1, recordings of currents through single receptor channels and determinations of energetic coupling between pairs of residues. We show that a pair of invariant arginine and glutamate residues in each receptor α-subunit electrostatically links peripheral and inner β-sheets from the binding domain and positions them to engage with the channel. The key glutamate and flanking valine residues energetically couple to conserved proline and serine residues emerging from the top of the channel-forming α-helix, suggesting that this is the point at which the binding domain triggers opening of the channel. The series of interresidue couplings identified here constitutes a primary allosteric pathway that links neurotransmitter binding to channel gating.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural model of the Torpedo receptor ligand-binding and pore domains at 4 Å resolution (PDB 2BG9) and proposed principal pathway linking agonist binding to channel gating.
Figure 2: Energetic coupling between Glu 45 and Arg 209 in the α-subunit.
Figure 3: Energetic coupling between residues in the α-subunit.

Similar content being viewed by others

References

  1. Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J. Mol. Biol. 346, 967–989 (2005)

    Article  CAS  Google Scholar 

  2. Kash, T., Jenkins, A., Kelly, J., Trudell, J. & Harrison, N. L. Coupling of agonist binding to channel gating in the GABAA receptor. Nature 421, 272–275 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Bouzat, C. et al. Coupling of agonist binding to channel gating in an ACh-binding protein linked to an ion channel. Nature 430, 896–900 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Gao, F. et al. Agonist-mediated conformational changes in acetylcholine-binding protein revealed by simulation and intrinsic tryptophan fluorescence. J. Biol. Chem. 280, 8443–8451 (2005)

    Article  CAS  Google Scholar 

  5. Law, R., Henchman, R. & McCammon, J. A. A gating mechanism proposed from a simulation of a human α7 nicotinic acetylcholine receptor. Proc. Natl Acad. Sci. USA 102, 6813–6818 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Unwin, N., Miyazawa, A., Li, J. & Fujiyoshi, Y. Activation of nicotinic acetylcholine receptor involves a switch in conformation of the α subunits. J. Mol. Biol. 319, 1165–1176 (2002)

    Article  CAS  Google Scholar 

  7. Celie, P. H. N. et al. Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 41, 907–914 (2004)

    Article  CAS  Google Scholar 

  8. Colquhoun, D. & Sakmann, B. Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels. Nature 294, 464–466 (1981)

    Article  ADS  CAS  Google Scholar 

  9. Sine, S. M., Claudio, T. & Sigworth, F. J. Activation of Torpedo acetylcholine receptors expressed in mouse fibroblasts. Single channel current kinetics reveal distinct agonist binding affinities. J. Gen. Physiol. 96, 395–437 (1990)

    Article  CAS  Google Scholar 

  10. Grosman, C., Zhou, M. & Auerbach, A. Mapping the conformational wave of acetylcholine receptor channel gating. Nature 403, 773–776 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Lee, W. Y. & Sine, S. M. Invariant aspartic acid in muscle nicotinic receptor contributes selectively to the kinetics of agonist binding. J. Gen. Physiol. 124, 555–567 (2004)

    Article  CAS  Google Scholar 

  12. Horovitz, A. & Fersht, A. Strategy for analyzing the co-operativity of intramolecular interactions in peptides and proteins. J. Mol. Biol. 214, 613–617 (1990)

    Article  CAS  Google Scholar 

  13. Vaughan, C., Harryson, P., Buckle, A. & Fersht, A. A structural double-mutant cycle: estimating the strength of a buried salt bridge in barnase. Acta Crystallogr. D 58, 591–600 (2002)

    Article  Google Scholar 

  14. Castaldo, P. et al. A novel hyperekplexia-causing mutation in the pre-transmembrane segment 1 of the human glycine receptor α1 subunit reduces membrane expression and impairs gating by agonists. J. Biol. Chem. 279, 25598–25604 (2004)

    Article  CAS  Google Scholar 

  15. Vicente-Agullo, F. et al. Multiple roles of the conserved key residue arginine 209 in neuronal nicotinic receptors. Biochemistry 40, 8300–8306 (2001)

    Article  CAS  Google Scholar 

  16. Kash, T. L., Dizon, M. J., Trudell, J. R. & Harrison, N. L. Charged residues in the β2 subunit involved in GABAA receptor activation. J. Biol. Chem. 279, 4887–4893 (2004)

    Article  CAS  Google Scholar 

  17. Hu, X. Q., Zhang, L., Stewart, R. R. & Weight, F. F. Arginine 222 in the pre-transmembrane domain 1 of 5-HT3A receptors links agonist binding to channel gating. J. Biol. Chem. 278, 46583–46589 (2003)

    Article  CAS  Google Scholar 

  18. Wilson, G. G. & Karlin, A. The location of the gate in the acetylcholine receptor channel. Neuron 20, 1269–12681 (1998)

    Article  CAS  Google Scholar 

  19. Serrano, L., Horovitz, A., Avron, B., Bycroft, M. & Fersht, A. Estimating the contribution of engineered surface electrostatic interactions to protein stability by using double-mutant cycles. Biochemistry 29, 9343–9352 (1990)

    Article  CAS  Google Scholar 

  20. Sine, S. M. The nicotinic receptor ligand binding domain. J. Neurobiol. 3, 431–446 (2002)

    Article  Google Scholar 

  21. Lyford, L. K., Sproul, A. D., Eddins, D., McLaughlin, J. T. & Rosenberg, R. L. Agonist-induced conformational changes in the extracellular domain of α7 nicotinic acetylcholine receptors. Mol. Pharmacol. 64, 650–658 (2003)

    Article  CAS  Google Scholar 

  22. Schofield, C. M., Jenkins, A. & Harrison, N. L. A highly conserved aspartic acid residue in the signature disulfide loop of the α1 subunit is a determinant of gating in the glycine receptor. J. Biol. Chem. 278, 34079–34083 (2003)

    Article  CAS  Google Scholar 

  23. Absalom, N. L., Lewis, T. M., Kaplan, W., Pierce, K. D. & Schofield, P. R. Role of charged residues in coupling ligand binding and channel activation in the extracellular domain of the glycine receptor. J. Biol. Chem. 278, 50151–50157 (2003)

    Article  CAS  Google Scholar 

  24. Chakrapani, S., Bailey, T. D. & Auerbach, A. Gating dynamics of the acetylcholine receptor extracellular domain. J. Gen. Physiol. 123, 341–356 (2004)

    Article  CAS  Google Scholar 

  25. Sala, F., Mulet, J., Sala, S., Gerber, S. & Criado, M. Charged amino acids of the N-terminal domain are involved in coupling binding and gating in α7 nicotinic receptors. J. Biol. Chem. 280, 6642–6647 (2005)

    Article  CAS  Google Scholar 

  26. Croxen, R. et al. Mutations in different functional domains of the human muscle acetylcholine receptor α subunit in patients with the slow-channel congenital myasthenic syndrome. Hum. Mol. Gen. 6, 767–774 (1997)

    Article  CAS  Google Scholar 

  27. Shen, X. M. et al. Mutation causing severe myasthenia reveals functional asymmetry of AChR signature cystine loops in agonist binding and gating. J. Clin. Invest. 111, 497–505 (2003)

    Article  CAS  Google Scholar 

  28. Sine, S. M. et al. Naturally-occurring mutations at the acetylcholine receptor binding site independently alter ACh binding and channel gating. J. Gen. Physiol. 120, 483–496 (2002)

    Article  CAS  Google Scholar 

  29. Humphrey, W., Dalke, A. & Schulten, K. VMD—visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996)

    Article  CAS  Google Scholar 

  30. Qin, F., Auerbach, A. & Sachs, F. Estimating single channel kinetic parameters from idealized patch clamp data containing missed events. Biophys. J. 70, 264–280 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. R. Free for contributions to the molecular biology and T. Therneau for help with statistical analysis. This work was supported by a grant from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Sine.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

This is an additional information regarding the experimental methods not included in the main text. (DOC 26 kb)

Supplementary Table 1

Kinetic analysis of AChRs with mutations in the α-subunit. (DOC 81 kb)

Supplementary Table S2

Kinetic analysis of AChRs with mutations in non-α-subunits. (DOC 61 kb)

Supplementary Table S3

Sequence alignments of receptors in the Cys-loop superfamily. (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, W., Sine, S. Principal pathway coupling agonist binding to channel gating in nicotinic receptors. Nature 438, 243–247 (2005). https://doi.org/10.1038/nature04156

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04156

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing