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Superspreading and the effect of individual
variation on disease emergence
J. O. Lloyd-Smith1,2, S. J. Schreiber3, P. E. Kopp4 & W. M. Getz1

Population-level analyses often use average quantities to describe
heterogeneous systems, particularly when variation does not arise
from identifiable groups1,2. A prominent example, central to our
current understanding of epidemic spread, is the basic repro-
ductive number, R0, which is defined as the mean number of
infections caused by an infected individual in a susceptible
population3,4. Population estimates of R0 can obscure consider-
able individual variation in infectiousness, as highlighted during
the global emergence of severe acute respiratory syndrome (SARS)
by numerous ‘superspreading events’ in which certain individuals
infected unusually large numbers of secondary cases5–10. For
diseases transmitted by non-sexual direct contacts, such as SARS
or smallpox, individual variation is difficult to measure empiri-
cally, and thus its importance for outbreak dynamics has
been unclear2,10,11. Here we present an integrated theoretical and
statistical analysis of the influence of individual variation in
infectiousness on disease emergence. Using contact tracing data
from eight directly transmitted diseases, we show that the distri-
bution of individual infectiousness around R0 is often highly
skewed. Model predictions accounting for this variation differ
sharply from average-based approaches, with disease extinction
more likely and outbreaks rarer but more explosive. Using these
models, we explore implications for outbreak control, showing
that individual-specific control measures outperform population-
wide measures. Moreover, the dramatic improvements achieved
through targeted control policies emphasize the need to identify
predictive correlates of higher infectiousness. Our findings indi-
cate that superspreading is a normal feature of disease spread, and
to frame ongoing discussion we propose a rigorous definition for
superspreading events and a method to predict their frequency.

For sexually transmitted and vector-borne diseases, host contact
rates have long served as surrogates for individual infectious-
ness3,12–14, leading to the assertion of a general ‘20/80 rule’ (whereby
20% of cases cause 80% of transmission13) and to the influential
concept of high-risk ‘core groups’3,12,13. For directly transmitted
infections, however, the overall infectiousness of each case—that is,
the number of other individuals infected during the infectious
lifetime of a single individual—arises from a complex mixture of
host, pathogen and environmental factors (see Supplementary
Notes). Consequently, the degree of infectiousness is distributed
continuously in any population4,7,11,15,16 and, crucially, distinct risk
groups often cannot be defined a priori2,11. This impedes the
conventional approach to adding heterogeneity to epidemic models,
in which populations are divided into homogeneous subgroups2–4,17.
Research on continuous individual variation in infectiousness for
directly transmitted infections has been largely restricted to within-
household transmission18,19, or to variation in infectious period20,21

or social network22. Some recent studies have used contact tracing

data to investigate specific questions in light of observed variation8,16,
but a broad understanding of the role of individual variation in
outbreak dynamics is lacking.

As a theoretical basis, we introduce the ‘individual reproductive
number’, n, as a random variable representing the expected number
of secondary cases caused by a particular infected individual.
Values for n are drawn from a continuous probability distribution
with population mean R0 that encodes all variation in infectious
histories of individuals, including properties of the host and patho-
gen and environmental circumstances. In this framework, super-
spreading events (SSEs) are not exceptional events9, but important
realizations from the right-hand tail of a distribution of n (refs 7, 15).
Stochastic effects in transmission are modelled using a Poisson
process4, so that the number of secondary infections caused by
each case, Z, is described by an ‘offspring distribution’ Pr(Z ¼ k)
where Z , Poisson(n).

By considering three possible distributions of n, we generate three
candidate models for the offspring distribution: (1) in generation-
based models neglecting individual variation, n ¼ R0 for all cases,
yielding Z , Poisson(R0); (2) in differential-equation models with
homogeneous transmission and constant recovery rates, n is expo-
nentially distributed, yielding Z , geometric(R0); (3) in a more
general formulation, we let n be gamma-distributed with mean R0

and dispersion parameter k, yielding Z , negative binomial(R0,k)
(ref. 23). The negative binomial model includes the conventional
Poisson (k ! 1) and geometric (k ¼ 1) models as special cases. It
has variance R0(1 þ R0/k), so smaller values of k indicate greater
heterogeneity.

We gathered empirical offspring distributions from detailed con-
tact tracing or surveillance data sets, and challenged the candidate
models using model selection techniques24 (see Supplementary
Notes). For SARS outbreaks in Singapore and Beijing, the negative
binomial model is unequivocally favoured (Fig. 1a and Supplemen-
tary Table 1). Conventional models assuming homogeneity cannot
reproduce the observed transmission patterns. For the Singapore
outbreak, the maximum-likelihood estimate k̂ is 0.16 (90% confi-
dence interval 0.11–0.64), indicating an underlying distribution of n
that is highly overdispersed (Fig. 1a, inset). According to this analysis,
the great majority of SARS cases in Singapore were barely infectious
(73% had n , 1) but a small proportion were highly infectious (6%
had n . 8). This is consistent with field reports from SARS-afflicted
regions5,6 but contrasts with published SARS models9,10,25,26.

Comparing results for eight directly transmitted infections reveals
the differing degree of individual variation among diseases and
outbreak settings (Fig. 1b, c and Supplementary Tables 1, 2). The
Poisson offspring distribution is almost always strongly rejected. The
geometric model has considerable support for several data sets,
which indicates significant individual variation in transmission
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rates because real infectious periods are less dispersed than the
exponential distribution20,21. The negative binomial model is selected
decisively for several data sets, and enables comparative study of
diseases through the dispersion parameter. Like SARS, measles
in highly vaccinated populations shows high variation in two
surveillance data sets, with narrow confidence intervals excluding
the conventional models (note that heterogeneous vaccination cover-
age is an important environmental factor contributing to
this pattern). Monkeypox and smallpox viruses show intermediate
variation, consistent across multiple data sets, and pneumonic
plague transmission is slightly less variable. Data limitations prevent
definitive conclusions for other diseases. Comparing our findings to
the 20/80 rule proposed for sexually transmitted and vector-borne
diseases13, no general rule emerges but the core principle of hetero-
geneous transmission is certainly supported (Fig. 1c).

Numerous reports of superspreading events provide further evi-
dence for variation in n. We reviewed 37 published accounts of SSEs
for 11 directly transmitted infections (Fig. 1d; see Supplementary
Notes). Unrecognized or misdiagnosed illness is the most common
cause of these SSEs, followed by alternative modes of spread
(especially airborne), high contact rates, and co-infections that aid
transmission. High pathogen load or shedding rates are occasionally
implicated, but are rarely measured. A consistent and general
definition of SSEs is currently lacking—for SARS, an SSE has been

arbitrarily defined as Z $ 8 (ref. 6), Z $ 10 (ref. 5), Z . 10 (ref. 26)
or ‘many more than the average number’9, and different thresholds
are surely needed for measles (R0 , 11–18; ref. 3) or monkeypox
(R0 , 1).

We propose this general protocol for defining a superspreading
event: (1) estimate the effective reproductive number, R, for the
disease and population in question; (2) construct a Poisson distri-
bution with mean R, representing the expected range of Z due to
stochasticity without individual variation; (3) define an SSE as any
infected individual who infects more than Z (n) others, where Z (n) is
the nth percentile of the Poisson(R) distribution. A 99th-percentile
SSE is then any case causing more infections than would occur in
99% of infectious histories in a homogeneous population (Fig. 1d).
This approach complements a priori identification of potential
superspreaders when that is feasible, as for sexually transmitted
diseases (where promiscuity drives risk)3,12. In addition, the defi-
nition enables prediction of the frequency of SSEs once R0 and k have
been estimated (Supplementary Fig. 1)—an outstanding challenge in
emerging disease epidemiology8,9.

To assess the effect of individual variation on disease outbreaks, we
analyse a branching process model with negative binomial offspring
distribution, corresponding to gamma-distributed n (Fig. 2a; see
Supplementary Notes). Of primary interest is the probability of
stochastic extinction, q, after the introduction of a single infected

Figure 1 | Evidence for variation in individual reproductive number n.
a, Transmission data from the SARS outbreak in Singapore in 2003 (ref. 5).
Bars show observed frequency of Z, the number of individuals infected by
each case. Lines show maximum-likelihood fits for Z , Poisson (squares),
Z , geometric (triangles), and Z , negative binomial (circles). Inset,
probability density function (solid) and cumulative distribution function
(dashed) for gamma-distributed n (corresponding to Z , negative
binomial) estimated from Singapore SARS data. b, Expected proportion of
all transmission due to a given proportion of infectious cases, where cases
are ranked by infectiousness. For a homogeneous population (all n ¼ R0),
this relation is linear. For five directly transmitted infections (based on
k̂ values in Supplementary Table 1), the line is concave owing to variation

in n. c, Proportion of transmission expected from themost infectious 20%of
cases, for 10 outbreak or surveillance data sets (triangles). Dashed lines show
proportions expected under the 20/80 rule (top) and homogeneity
(bottom). Superscript ‘v’ indicates a partially vaccinated population.
d, Reported superspreading events (SSEs; diamonds) relative to estimated
reproductive number R (squares) for twelve directly transmitted infections.
Lines show 5–95 percentile range of Z , Poisson(R), and crosses show the
99th-percentile proposed as threshold for SSEs. Stars represent SSEs caused
bymore than one source case. ‘Other’ diseases are: 1, Streptococcus group A;
2, Lassa fever; 3, Mycoplasma pneumonia; 4, pneumonic plague; 5,
tuberculosis. R is not shown for ‘other’ diseases, and is off-scale for
monkeypox. See Supplementary Notes for details.
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individual (Fig. 2b). For R0 , 1, all invasions die out, as in standard
models. For R0 . 1, increased variation strongly favours extinction8.
For example, if R0 ¼ 3 then q ¼ 0.06 under the assumption of
homogeneous n (k ! 1), or q ¼ 0.33 if k ¼ 1, but if k ¼ 0.16 (as
estimated for SARS) then q ¼ 0.76. Extinction risk rises owing to a
higher proportion of non-transmitting cases when n is overdispersed
(Figs 1a, 2a and Supplementary Fig. 2a). This effect thwarts invasion
by diseases that are very potent spreaders on average: for arbitrarily
high R0, q ! 1 as k ! 0 (Supplementary Fig. 2b). The expected
number of cases before extinction is hardly affected by k (Sup-
plementary Fig. 2c), because low-k outbreaks that fail probably
lacked SSEs and thus resemble homogeneous outbreaks with lower
R0. Accordingly, when individual variation is large, extinction occurs
rapidly or not at all (Supplementary Fig. 2d).

For outbreaks avoiding stochastic extinction, epidemic growth

rates strongly depend on variation in n (Fig. 2c and Supplementary
Fig. 2e, f). Diseases with high individual variation show infrequent
but explosive epidemics after introduction of a single case. This
pattern recalls SARS in 2003, for which many settings experienced
no epidemic despite unprotected exposure to SARS cases27,28,
whereas a few cities suffered explosive outbreaks8–10,15,26. Our results,
using k̂¼ 0:16 for SARS, explain this simply by the presence or
absence of high-n individuals in the early generations of each out-
break6. In contrast, conventional models (with k ¼ 1 or k ! 1)
cannot simultaneously generate frequent failed invasions and rapid
growth rates without additional, subjective model structure.

Disease control interventions could increase or decrease individual
variation in infectiousness. Infected individuals might reduce their
number of non-essential contacts, or governments might impose
quarantine or isolation on particular individuals. Here we explore

Figure 2 |Outbreak dynamics with different degrees of individual variation
in infectiousness. a, The individual reproductive number n is drawn from a
gamma distribution with mean R0 and dispersion parameter k. Probability
density functions are shown for six gamma distributions with R0 ¼ 1.5
(‘k ¼ Inf ’ indicates k ! 1). b, Probability of stochastic extinction of an
outbreak, q, versus population-average reproductive number, R0, following
introduction of a single infected individual. The value of k increases from

top to bottom (values and colours as in a). c, Growth of simulated outbreaks
with R0 ¼ 1.5 and one initial case, conditional on non-extinction. Boxes
show median and interquartile range (IQR) of the first disease generation
with 100 cases; whiskers show most extreme values within 1.5 £ IQR of the
boxes, and crosses show outliers. Percentages show the proportion of 10,000
simulated outbreaks that reached the 100-case threshold (roughly 1 2 q).

Figure 3 | Implications for control measures. a, Increase in extinction
probability (q ind 2 qpop) under individual-specific control compared to
population-wide control, for diseases with R0 ¼ 3 and different degrees of
individual variation, k, subject to control effort c. With population-wide
control, the infectiousness of all individuals is reduced by a factor c. With
individual-specific control, a proportion c of infectious individuals (selected
at random) have their infectiousness reduced to zero. The outbreak is
assumed to begin with one case, with control present from the outset.
b, Estimates of R̂ and k̂ from outbreak data sets before and after control
measures were initiated (joined by solid lines; Supplementary Table 2), and
post-control values of kc estimated from theoretical models of control as
described in the Supplementary Notes. c, Effect of random versus targeted
control measures. The probability of outbreak containment (defined as

never reaching the 100-case threshold) for four diseases with R0 ¼ 3 and
k ¼ 0.1 (blue), k ¼ 0.5 (green), k ¼ 1 (black) or k ! 1 (purple). Control
policies are population-wide (solid lines), random individual-specific
(dotted lines), or targeted individual-specific (dashed lines, where half of all
control effort is focused on themost infectious 20% of cases). For k ! 1, all
individuals are identical, so targeting has no effect and dotted and dashed
lines overlay one another. d, The factor by which targeting increases the
effect of control on preventing a major outbreak, relative to random
individual-specific control (see Supplementary Notes), when 20%, 40% or
60% of the total population is controlled. Results in c and d are the mean of
10,000 simulations, with control beginning in the second generation of
cases.
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several idealized cases theoretically, for an outbreak with offspring
distribution Z , negative binomial(R0,k) before control (see Sup-
plementary Notes). Consider the effect of control effort c, where
c ¼ 0 reflects no control and c ¼ 1 reflects complete blockage of
transmission. Under population-wide control, the infectiousness of
every individual in the population is reduced by a factor c (that is,
npop
c ¼ ð12 cÞn for all individuals). Under random, individual-

specific control, a proportion c of infected individuals (chosen at
random) is traced and isolated completely such that they cause zero
infections (that is nind

c ¼ 0 for a proportion c of infected individuals,
and nind

c ¼ n for the rest). Individual-specific control raises the degree
of heterogeneity in the outbreak as measured by the variance-to-
mean ratio of Z, whereas population-wide control reduces hetero-
geneity. Both approaches yield effective reproductive number
R ¼ (1 2 c)R0, so the threshold control effort for guaranteed disease
extinction is c $ 1 2 1/R0 as in conventional models. For inter-
mediate values of c, however, the individual-specific approach always
works better (Fig. 3a and Supplementary Fig. 3a, b), consistent with
our finding that higher variation favours disease extinction (Fig. 2b).
Branching process theory confirms that q ind . qpop whenever
c [ (0,1 2 1/R0) (see Supplementary Notes).

To assess the realism of these idealized control scenarios, we
analysed contact tracing data from four outbreaks before and after
imposition of control measures. Control always lowered the esti-
mated dispersion parameter (that is k̂c , k̂) as predicted by the
individual-specific model (Fig. 3b), although small sample sizes often
led to overlapping confidence intervals (Supplementary Table 2).
This increased skew in transmission arose chiefly from undiagnosed
or misdiagnosed individuals, who continued to infect others (and
even cause SSEs), whereas controlled individuals infected very few.
To further examine our control theories, we calculated kpop

c and kind
c

for each data set; k̂c was always closer to kind
c , although twice it fell

between the two predictions, indicating a possible combination of
control mechanisms (Fig. 3b). Real-world control thus seems to
increase individual variation, favouring extinction but risking
ongoing SSEs. Larger data sets are needed to establish this pattern
definitively.

If highly infectious individuals can be identified predictively (see
Supplementary Notes) then the efficiency of control could be greatly
increased (Fig. 3c, d). Focusing half of all control effort on the most
infectious 20% of cases is up to threefold more effective than random
control (Fig. 3d). When k ¼ 0.1 or 0.5, outbreak containment is
assured for targeted control levels at roughly half the threshold level
of c ¼ 1 2 1/R0 for random control. Gains in efficiency increase with
more intense targeting of high-n cases, but saturate as overall cover-
age c increases (Supplementary Fig. 3c, d). Again, branching process
theory generalizes these findings: for a given proportion c of
individuals controlled, greater targeting of higher-n individuals
leads to lower effective reproductive number R and higher extinction
probability q (see Supplementary Notes).

The data sets analysed here were collected from published litera-
ture, and may be subject to selection bias for successful invasions and
SSEs rather than typical disease behaviour. Surveillance data sets are
less vulnerable to this bias, but may under-report isolated cases. We
urge that detailed transmission tracing data be collected and made
public whenever possible, even if unexceptional. At a minimum, we
propose a new measure for inclusion in outbreak reports: the
proportion of cases not transmitting (p0), which, together with R0

is sufficient to estimate the degree of variation in n (Supplementary
Fig. 4). As more data become available, trends may emerge in the
degree of variation present, for example, for different modes of
spread or levels of virulence. Richer data sets may also enable testing
of the branching process assumption that case outcomes are inde-
pendent and identically distributed, by detecting possible corre-
lations in n values within transmission lineages or systematic
changes as outbreaks progress.

Our results have broad implications for emerging disease

epidemiology, and open challenges for further work. Explosive
epidemics demand rapid action by authorities and can strain health
infrastructures. High extinction probabilities indicate that disease
introductions or host species jumps may be more frequent than
currently suspected. Cluster-size surveillance for pathogen adap-
tation29 or dwindling population immunity30 should be tuned to
observed levels of variation. Realization of targeted control measures
requires a better understanding of factors determining individual
infectiousness. This work must be integrated with established theory
of sexually transmitted diseases and social networks, where high-risk
groups exert nonlinear influence on R 0 because contact rates
affect infectiousness and susceptibility equally3,4,12,13,22. All diseases
probably show intermediate degrees of covariation between infec-
tiousness and susceptibility, a topic demanding empirical and theo-
retical study17. The central role of R 0 in epidemic analysis is
unassailable, but our findings show that emerging disease outbreaks
cannot be fully understood if individual variation in infectiousness is
neglected. Examination of other population processes dependent on
small numbers of individuals may yield similar insights.

METHODS
Analysis of disease data. For data sets including the full distribution of Z, we
estimated R̂0 and k̂ using maximum-likelihood methods. The candidate models
were compared using Akaike’s information criterion (AICc) modified for small
sample size. Confidence intervals for k̂ were estimated by bias-corrected non-
parametric bootstrapping and corroborated by four other methods. For data sets
including only estimates of R̂0 and the proportion of cases not transmitting (p̂0),
we estimated k̂ by solving p̂0 ¼ ð1þ R̂0=kÞ

2k numerically, and evaluated the
candidate models using confidence intervals calculated by two methods.
Expected proportions of transmission due to particular groups of infectious
individuals (Fig. 1b, c) were calculated using the gamma distribution of n with
estimated values of R̂0 and k̂. See Supplementary Notes for details, and for
descriptions of data sets.
Branching process analysis. Analysis of branching process models centres on
the probability generating function (pgf) of the offspring distribution,
gðsÞ ¼

P1
j¼0 Pr ðZ ¼ jÞ sj, defined for jsj # 1. When R 0 . 1, the long-

term probability of disease extinction after introduction of a single infected
individual is the unique solution of q ¼ g(q) on the interval (0,1). For a
negative binomial offspring distribution Z < NegB(R 0,k), the pgf is
gðsÞ ¼ ð1þ R0

k ð12 sÞÞ2k. Under population-wide control, Zpop
c < NegBðð12

cÞR0;kÞ and therefore gpopðsÞ ¼ ð1þð12 cÞR0

k ð12 sÞÞ2k; and the variance-to-
mean ratio is 1 þ (1 2 c)R0/k. Under random individual-specific control, the
exact pgf is g indðsÞ ¼ cþð12 cÞ 1þ R0

k ð12 sÞ
� �2k

with variance-to-mean ratio
1þR0=kþ cR0. This scenario can be approximated by Z ind;NB

c < NegBðð12

cÞR0; k
ind
c ), where kind

c is the solution to p0 þ cð12 p0Þ ¼ 1þRind
c =kind

c

� �2kind
c and

decreases monotonically as c increases. Further details, descriptions of outbreak

simulations and formal analysis of control measures are found in the Sup-

plementary Notes.
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