Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tracing the first stars with fluctuations of the cosmic infrared background

Abstract

The deepest space- and ground-based observations find metal-enriched galaxies at cosmic times when the Universe was less than 1 Gyr old. These stellar populations had to be preceded by the metal-free first stars, known as ‘population III’. Recent cosmic microwave background polarization measurements indicate that stars started forming early—when the Universe was ≤200 Myr old. It is now thought that population III stars were significantly more massive than the present metal-rich stellar populations. Although such sources will not be individually detectable by existing or planned telescopes, they would have produced significant cosmic infrared background radiation in the near-infrared, whose fluctuations reflect the conditions in the primordial density field. Here we report a measurement of diffuse flux fluctuations after removing foreground stars and galaxies. The anisotropies exceed the instrument noise and the more local foregrounds; they can be attributed to emission from population III stars, at an era dominated by these objects.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Spectra of CIB fluctuations.
Figure 2: Colour properties of clipped maps.
Figure 3: Contribution to CIB flux from Spitzer IRAC galaxy counts at 3.6 µm and 4.5 µm.

References

  1. Hauser, M. G. & Dwek, E. The cosmic infrared background: Measurements and implications. Annu. Rev. Astron. Astrophys. 39, 249–307 (2001)

    ADS  CAS  Article  Google Scholar 

  2. Kashlinsky, A. Cosmic infrared background and early galaxy evolution. Phys. Rep. 409, 361–438 (2005)

    ADS  CAS  Article  Google Scholar 

  3. Kogut, A. et al. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Temperature-polarization correlation. Astrophys. J. Suppl. 148, 161–173 (2003)

    ADS  Article  Google Scholar 

  4. Abel, T. et al. The formation of the first star in the Universe. Science 295, 93–98 (2002)

    ADS  CAS  Article  Google Scholar 

  5. Bromm, V. et al. Forming the first stars in the Universe: The fragmentation of primordial gas. Astrophys. J. 527, L5–L8 (1999)

    ADS  CAS  Article  Google Scholar 

  6. Bromm, V. & Larson, R. B. The first stars. Annu. Rev. Astron. Astrophys. 42, 79–118 (2004)

    ADS  CAS  Article  Google Scholar 

  7. Rees, M. J. Origin of pregalactic microwave background. Nature 275, 35–37 (1978)

    ADS  Article  Google Scholar 

  8. Kashlinsky, A., Arendt, R., Gardner, J. P., Mather, J. & Moseley, S. H. Detecting population III stars through observations of near-infrared cosmic infrared background anisotropies. Astrophys. J. 608, 1–9 (2004)

    ADS  CAS  Article  Google Scholar 

  9. Kashlinsky, A., Mather, J. & Odenwald, S. Clustering of the diffuse infrared light from the COBE DIRBE maps. IV. Overall results and possible interpretations. Preprint (1999).

  10. Salvaterra, R. & Ferrara, A. The imprint of the cosmic dark ages on the near-infrared background. Mon. Not. R. Astron. Soc. 339, 973–982 (2003)

    ADS  CAS  Article  Google Scholar 

  11. Magliocchetti, M., Salvaterra, R. & Ferrara, A. First stars contribution to the near-infrared background fluctuations. Mon. Not. R. Astron. Soc. 342, L25–L29 (2003)

    ADS  Article  Google Scholar 

  12. Santos, M., Bromm, V. & Kamionkowski, M. The contribution of the first stars to the cosmic infrared background. Mon. Not. R. Astron. Soc. 336, 1082–1092 (2002)

    ADS  Article  Google Scholar 

  13. Cooray, A., Bock, J., Keating, B., Lange, A. & Matsumoto, T. First star signature in infrared background anisotropies. Astrophys. J. 606, 611–624 (2004)

    ADS  CAS  Article  Google Scholar 

  14. Kashlinsky, A. & Odenwald, S. Clustering of the diffuse infrared light from the COBE DIRBE maps. III. Power spectrum analysis and excess isotropic component of fluctuations. Astrophys. J. 528, 74–95 (2000)

    ADS  Article  Google Scholar 

  15. Matsumoto, T. et al. Infrared telescope in space observations of the near-infrared extra-galactic background light. Astrophys. J. 626, 31–43 (2005)

    ADS  CAS  Article  Google Scholar 

  16. Kashlinsky, A., Odenwald, S., Mather, J., Skrutskie, M. & Cutri, R. Detection of small-scale fluctuations in the near-infrared cosmic infrared background from long-exposure 2MASS fields. Astrophys. J. 579, L53–L57 (2002)

    ADS  Article  Google Scholar 

  17. Odenwald, S., Kashlinsky, A., Mather, J., Skrutskie, M. & Cutri, R. Analysis of the diffuse near-infrared emission from Two-Micron All-Sky Survey deep integration data: Foregrounds versus the cosmic infrared background. Astrophys. J. 583, 535–550 (2003)

    ADS  Article  Google Scholar 

  18. Fazio, G. G. et al. Number counts at 3 µm <λ <10 µm from the Spitzer Space Telescope. Astrophys. J. Suppl. 154, 39–43 (2004)

    ADS  Article  Google Scholar 

  19. Fazio, G. G. et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope. Astrophys. J. Suppl. 154, 10–17 (2004)

    ADS  Article  Google Scholar 

  20. Barmby, P. et al. Deep mid-infrared observations of Lyman break galaxies. Astrophys. J. Suppl. 154, 97–102 (2004)

    ADS  CAS  Article  Google Scholar 

  21. Fixsen, D. J., Moseley, S. H. & Arendt, R. G. Calibrating array detectors. Astrophys. J. Suppl. 128, 651–658 (2000)

    ADS  Article  Google Scholar 

  22. Högbom, J. Aperture synthesis with a non-regular distribution of interferometer baselines. Astrophys. J. Suppl. 15, 417–426 (1974)

    ADS  Google Scholar 

  23. Kelsall, T. et al. The COBE Diffuse Infrared Background Experiment search for the cosmic infrared background. II. Model of the interplanetary dust cloud. Astrophys. J. 508, 44–73 (1998)

    ADS  Article  Google Scholar 

  24. Kaiser, N. On the spatial correlations of Abell clusters. Astrophys. J. 284, L9–L12 (1984)

    ADS  Article  Google Scholar 

  25. Bertin, E. & Arnouts, S. SExtractor: Software for source extraction. Astron. Astrophys. Suppl. 117, 393–404 (1996)

    ADS  Article  Google Scholar 

  26. Bennett, C. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results. Astrophys. J. Suppl. 148, 1–37, (2003)

    ADS  Article  Google Scholar 

  27. Perlmutter, S. et al. Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)

    ADS  Article  Google Scholar 

  28. Efstathiou, G., Sutherland, W. J. & Maddox, S. J. The cosmological constant and cold dark matter. Nature 348, 705–707 (1990)

    ADS  Article  Google Scholar 

  29. Tegmark, M. et al. Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501–103527 (2004)

    ADS  Article  Google Scholar 

  30. Peacock, J. & Dodds, S. J. Non-linear evolution of cosmological power spectra, 1996. Mon. Not. R. Astron. Soc. 280, L19–L26 (1996)

    ADS  Article  Google Scholar 

  31. Maddox, S., Efstathiou, G., Sutherland, W. & Loveday, J. Galaxy correlations on large scales. Mon. Not. R. Astron. Soc. 242, 43P–47P (1990)

    ADS  Article  Google Scholar 

  32. Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005)

    ADS  CAS  Article  Google Scholar 

  33. Oliver, S. et al. Angular clustering of galaxies at 3.6 microns from the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. Astrophys. J. Suppl. 154, 30–34 (2004)

    ADS  Article  Google Scholar 

  34. Steidel, C. et al. Spectroscopic identification of a protocluster at z = 2.300: Environmental dependence of galaxy properties at high redshift. Astrophys. J. 626, 44–50 (2005)

    ADS  CAS  Article  Google Scholar 

  35. Miralda-Escude, J. The dark age of the Universe. Science 300, 1904–1909 (2003)

    ADS  CAS  Article  Google Scholar 

  36. Kashlinsky, A. Reconstructing the spectrum of the pregalactic density field from astronomical data. Astrophys. J. 492, 1–28 (1998)

    ADS  CAS  Article  Google Scholar 

  37. Gautier, T. N., Boulanger, F., Perault, M. & Puget, J. L. A calculation of confusion noise due to infrared cirrus. Astron. J. 103, 1313–1324 (1992)

    ADS  Article  Google Scholar 

  38. Ingalls, J. G. et al. Structure and colors of diffuse emission in the Spitzer galactic first look survey. Astrophys. J. 154, 281–285 (2004)

    CAS  Article  Google Scholar 

  39. Wright, E. L. Angular power spectra of the COBE DIRBE maps. Astrophys. J. 496, 1–8 (1998)

    ADS  Article  Google Scholar 

  40. Eisenhardt, P. R. et al. The Infrared Array Camera (IRAC) shallow survey. Astrophys. J. Suppl. 154, 48–53 (2004)

    ADS  CAS  Article  Google Scholar 

  41. Cowie, L. L. et al. New insight on galaxy formation and evolution from Keck spectroscopy of the Hawaii Deep Fields. Astron. J. 112, 839–864 (1996)

    ADS  CAS  Article  Google Scholar 

  42. Shapley, A. E. et al. Ultraviolet to mid-infrared observations of star-forming galaxies at z2: Stellar masses and stellar populations. Astrophys. J. 626, 698–722 (2005)

    ADS  CAS  Article  Google Scholar 

  43. Hauser, M. G. et al. The COBE diffuse infrared background experiment search for the cosmic infrared background. I. Limits and detections. Astrophys. J. 508, 25–43 (1998)

    ADS  Article  Google Scholar 

  44. Wright, E. L. DIRBE minus 2MASS: Confirming the cosmic infrared background at 2.2 microns. Astrophys. J. 553, 538–544 (2001)

    ADS  Article  Google Scholar 

  45. Arendt, R. et al. The COBE diffuse infrared background experiment search for the cosmic infrared background. III. Separation of galactic emission from the infrared sky brightness. Astrophys. J. 508, 74–105 (1998)

    ADS  Article  Google Scholar 

  46. Dwek, D. & Arendt, R. A tentative detection of the cosmic infrared background at 3.5 µm from COBE/DIRBE observations. Astrophys. J. 508, L9–L12 (1998)

    ADS  Article  Google Scholar 

  47. Wright, E. L. & Reese, E. D. Detection of the cosmic infrared background at 2.2 and 3.5 microns using DIRBE observations. Astrophys. J. 545, 43–55 (2000)

    ADS  Article  Google Scholar 

  48. Gorjian, V., Wright, E. L. & Chary, R. R. Tentative detection of the cosmic infrared background at 2.2 and 3.5 microns using ground-based and space-based observations. Astrophys. J. 536, 550–560 (2000)

    ADS  Article  Google Scholar 

  49. Cambresy, L., Reach, W. T., Beichman, C. A. & Jarrett, T. H. The cosmic infrared background at 1.25 and 2.2 microns using DIRBE and 2MASS: A contribution not due to galaxies? Astrophys. J. 555, 563–571 (2001)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank G. Fazio for access to the IRAC Deep Survey data and D. Fixsen and G. Hinshaw for comments on drafts of this paper. This Article reports work supported by the National Science Foundation, and which is based on observations made with the Spitzer Space Telescope (this telescope is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA). Support for this work was also provided by NASA through an award issued by JPL/Caltech. Author Contributions A.K. is responsible for the idea, clipping the maps, power spectrum and correlation analyses, evaluating the extragalactic contributions and writing the paper. R.G.A. is responsible for the images for analysis, providing the model of the resolved sources with the IRAC PSF, and evaluating systematics, instrument, and zodiacal and cirrus contributions. J.M. and S.H.M. developed analysis strategy and searched for alternative explanations for the fluctuations. All authors provided critical review of the analysis techniques, results and manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kashlinsky.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Figures 1–4, Supplementary Methods and Supplementary Discussion. (PDF 3384 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kashlinsky, A., Arendt, R., Mather, J. et al. Tracing the first stars with fluctuations of the cosmic infrared background. Nature 438, 45–50 (2005). https://doi.org/10.1038/nature04143

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04143

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing