Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cooling of the Earth and core formation after the giant impact

Abstract

Kelvin calculated the age of the Earth to be about 24 million years by assuming conductive cooling from being fully molten to its current state1. Although simplistic2, his result is interesting in the context of the dramatic cooling that took place after the putative Moon-forming giant impact, which contributed the final 10 per cent of the Earth's mass3,4. The rate of accretion and core segregation on Earth as deduced from the U–Pb system5 is much slower than that obtained from Hf–W systematics6,7,8, and implies substantial accretion after the Moon-forming impact, which occurred 45 ± 5 Myr after the beginning of the Solar System. Here we propose an explanation for the two timescales5,9. We suggest that the Hf–W timescale reflects the principal phase of core-formation before the giant impact. Crystallization of silicate perovskite in the lower mantle during this phase produced Fe3+, which was released during the giant impact10, and this oxidation resulted in late segregation of sulphur-rich metal into which Pb dissolved readily, setting the younger U–Pb age of the Earth. Separation of the latter metal then occurred 30 ± 10 Myr after the Moon-forming impact. Over this time span, in surprising agreement with Kelvin's result, the Earth cooled by about 4,000 K in returning from a fully molten to a partially crystalline state.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Application of the growth model to the determination of the time of the Moon-forming impact.
Figure 2: Calculated effect of perovskite crystallization on the Fe3+ content and hence oxygen fugacity ( f O 2 ) of a magma ocean of peridotite composition.
Figure 3: Results of modelling 11 estimates of the Pb isotopic composition of the BSE with late stage loss of Pb5.

References

  1. Kelvin, The age of the Earth. Nature 51, 438–440 (1895)

    ADS  Article  Google Scholar 

  2. Carslaw, H. S. & Jaeger, J. C. Conduction of Heat in Solids (Oxford Univ. Press, London, 1959)

    MATH  Google Scholar 

  3. Cameron, A. G. W. & Benz, W. Origin of the Moon and the single impact hypothesis IV. Icarus 92, 204–216 (1991)

    ADS  Article  Google Scholar 

  4. Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth's formation. Nature 412, 708–712 (2001)

    ADS  CAS  Article  Google Scholar 

  5. Halliday, A. N. Mixing, volatile loss and compositional change during impact-driven accretion of the Earth. Nature 427, 505–509 (2004)

    ADS  CAS  Article  Google Scholar 

  6. Kleine, T., Munker, C., Mezger, K. & Palme, H. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418, 952–955 (2002)

    ADS  CAS  Article  Google Scholar 

  7. Yin, Q. Z. et al. A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418, 949–952 (2002)

    ADS  CAS  Article  Google Scholar 

  8. Schoenberg, R., Kamber, B. S., Collerson, K. D. & Eugster, O. New W-isotope evidence for rapid terrestrial accretion and very early core formation. Geochim. Cosmochim. Acta 66, 3151–3160 (2002)

    ADS  CAS  Article  Google Scholar 

  9. Kleine, T., Palme, H. & Mezger, K. The Hf-W age of the lunar magma ocean. Proc. Lunar Planet. Sci. Conf. XXXVI, 1940 (2005)

    ADS  Google Scholar 

  10. Frost, D. J. et al. Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature 428, 409–412 (2004)

    ADS  CAS  Article  Google Scholar 

  11. Halliday, A. N. The origin and earliest history of the Earth. In Meteorites, Comets and Planets (ed. Davis, A. M.) 509–557 (Elsevier-Pergamon, Oxford, 2003)

    Google Scholar 

  12. Stevenson, D. J. Models of the Earth's core. Science 214, 611–619 (1981)

    ADS  CAS  Article  Google Scholar 

  13. Harper, C. L. Jr & Jacobsen, S. B. Evidence for 182Hf in the early Solar System and constraints on the timescale of terrestrial accretion and core formation. Geochim. Cosmochim. Acta 60, 1131–1153 (1996)

    ADS  CAS  Article  Google Scholar 

  14. Canup, R. M. Simulations of a late lunar-forming impact. Icarus 168, 433–456 (2004)

    ADS  CAS  Article  Google Scholar 

  15. Halliday, A. N. & Kleine, T. Meteorites and the timing, mechanisms and conditions of terrestrial planet accretion and early differentiation. In Meteorites and the Early Solar System II (eds Lauretta, D., Leshin, L. & MacSween, H.) (Univ. Arizona Press, Tucson, in the press)

  16. McDonough, W. F. & Sun, S.-s. The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    ADS  CAS  Article  Google Scholar 

  17. Allegre, C. J., Poirier, J.-P., Humler, E. & Hofmann, A. W. The chemical composition of the Earth. Earth Planet. Sci. Lett. 134, 515–526 (1995)

    ADS  CAS  Article  Google Scholar 

  18. Righter, K. & Drake, M. J. Metal-silicate equilibrium in a homogeneously accreting earth: New results for Re. Earth Planet. Sci. Lett. 146, 541–553 (1997)

    ADS  CAS  Article  Google Scholar 

  19. Ohtani, E., Yurimoto, H. & Seto, S. Element partitioning between metallic liquid, silicate liquid, and lower-mantle minerals: implications for core formation of the Earth. Phys. Earth Planet. Inter. 100, 97–114 (1997)

    ADS  CAS  Article  Google Scholar 

  20. Wood, B. J., Bryndzia, L. T. & Johnson, K. E. Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248, 337–345 (1990)

    ADS  CAS  Article  Google Scholar 

  21. Francis, R. D. Sulfide globules in mid-ocean ridge basalts (MORB), and the effect of oxygen abundance in Fe-S-O liquids on the ability of those liquids to partition metals from MORB and komatiite magmas. Chem. Geol. 85, 199–213 (1990)

    ADS  CAS  Article  Google Scholar 

  22. Jones, J. H., Hart, S. R. & Benjamin, T. M. Experimental partitioning near the Fe-FeS eutectic, with an emphasis on elements important to iron meteorite chronologies (Pb, Ag, Pd, and Tl). Geochim. Cosmochim. Acta 57, 453–460 (1993)

    ADS  CAS  Article  Google Scholar 

  23. Chabot, N. L. & Jones, J. H. The parameterization of solid metal-liquid metal partitioning of siderophile elements. Meteorit. Planet. Sci. 38, 1425–1436 (2003)

    ADS  CAS  Article  Google Scholar 

  24. O'Neill, H. S. The origin of the Moon and the early history of the Earth—A chemical model. Part 2: The Earth. Geochim. Cosmochim. Acta 55, 1159–1172 (1991)

    ADS  CAS  Article  Google Scholar 

  25. Kasting, J. F., Eggler, D. H. & Raeburn, S. P. Mantle redox evolution and the oxidation-state of the Archean atmosphere. J. Geol. 101, 245–257 (1993)

    ADS  CAS  Article  Google Scholar 

  26. Chabot, N. L., Draper, D. S. & Agee, C. B. Conditions of core formation in the Earth: Constraints from nickel and cobalt partitioning. Geochim. Cosmochim. Acta 69, 2141–2151 (2005)

    ADS  CAS  Article  Google Scholar 

  27. Wade, J. & Wood, B. J. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005)

    ADS  CAS  Article  Google Scholar 

  28. Yi, W. et al. Cadmium, indium, tin, tellurium, and sulfur in oceanic basalts: Implications for chalcophile element fractionation in the Earth. J. Geophys. Res. Solid Earth 105, 18927–18948 (2000)

    CAS  Article  Google Scholar 

  29. Holzheid, A. & Grove, T. L. Sulfur saturation limits in silicate melts and their implications for core formation scenarios for terrestrial planets. Am. Mineral. 87, 227–237 (2002)

    ADS  CAS  Article  Google Scholar 

  30. Abe, Y. Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter. 100, 27–39 (1997)

    ADS  CAS  Article  Google Scholar 

  31. Wetherill, G. W. Accumulation of the terrestrial planets and implications concerning lunar origin. In Origin of the Moon (eds Hartmann, W. K., Phillips, R. J. & Taylor, G. J.) (Lunar and Planetary Institute, Houston, 1986)

    Google Scholar 

  32. Tronnes, R. G. & Frost, D. J. Peridotite melting and mineral-melt partitioning of major and minor elements at 22–24.5 GPa. Earth Planet. Sci. Lett. 197, 117–131 (2002)

    ADS  CAS  Article  Google Scholar 

  33. Kilinc, A., Carmichael, I. S. E., Rivers, M. L. & Sack, R. O. The ferric-ferrous ratio of natural silicate liquids equilibrated in air. Contrib. Mineral. Petrol. 83, 136–140 (1983)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

Discussions with J. Wade and M. Walter helped to clarify our arguments. B.J.W. acknowledges the support of a Max-Planck Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard J. Wood.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wood, B., Halliday, A. Cooling of the Earth and core formation after the giant impact. Nature 437, 1345–1348 (2005). https://doi.org/10.1038/nature04129

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04129

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing