Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A ‘dry’ condensation origin for circumstellar carbonates

Abstract

The signature of carbonate minerals has long been suspected in the mid-infrared spectra of various astrophysical environments such as protostars1. Abiogenic carbonates are considered as indicators of aqueous mineral alteration2 in the presence of CO2-rich liquid water. The recent claimed detection of calcite associated with amorphous silicates in two planetary nebulae3 and protostars4,5 devoid of planetary bodies questions the relevance of this indicator; but in the absence of an alternative mode of formation under circumstellar conditions, this detection remains controversial6,7,8. The main dust component observed in circumstellar envelopes is amorphous silicates9, which are thought to have formed by non-equilibrium condensation10. Here we report experiments demonstrating that carbonates can be formed with amorphous silicates during the non-equilibrium condensation of a silicate gas in a H2O-CO2-rich vapour. We propose that the observed astrophysical carbonates have condensed in H2O(g)-CO2(g)-rich, high-temperature and high-density regions such as evolved stellar winds, or those induced by grain sputtering upon shocks in protostellar outflows.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Transmission electron micrographs of low-temperature condensates.
Figure 2: Typical mid-infrared transmission spectra (4,000–600 cm -1 ) of material condensed from Ca-Al-rich gas.
Figure 3: Spectrum 3 of the NGC 6302 planetary nebulae as observed by the Infrared Space Observatory Short Wavelength and Long Wavelength Spectrometers (10–200 µm).

References

  1. Sandford, S. A. Acid dissolution experiments: carbonates and the 6,8-micrometer bands in interplanetary dust particles. Science 231, 1540–1541 (1986)

    ADS  CAS  Article  Google Scholar 

  2. Lewis, J. S. Low-temperature condensation from the solar nebula. Icarus 16, 241–252 (1972)

    ADS  CAS  Article  Google Scholar 

  3. Kemper, F. et al. Detection of carbonates in dust shells around evolved stars. Nature 415, 295–297 (2002)

    ADS  CAS  Article  Google Scholar 

  4. Ceccarelli, C. et al. Discovery of calcite in the solar type protostar NGC 1333-IRAS4. Astron. Astrophys. 395, L29–L33 (2002)

    ADS  CAS  Article  Google Scholar 

  5. Chiavassa, A., Ceccarelli, C., Tielens, A. G. G. M., Caux, E. & Maret, S. The 90–110 µm dust features in low to intermediate mass protostars: calcite? Astron. Astrophys. 432, 547–557 (2005)

    ADS  CAS  Article  Google Scholar 

  6. Onaka, T. & Okada, Y. Detection of far-infrared features in star-forming regions. Astrophys. J. 585, 872–877 (2003)

    ADS  CAS  Article  Google Scholar 

  7. Hofmeister, A. M., Wopenka, B. & Locock, A. J. Spectroscopy and structure of hibonite, grossite, and CaAl2O4: Implications for astronomical environments. Geochim. Cosmochim. Acta 68, 4485–4503 (2004)

    ADS  CAS  Article  Google Scholar 

  8. Ferrarotti, A. S. & Gail, H.-P. Mineral formation in stellar wind V. Formation of calcium carbonate. Astron. Astrophys. 430, 959–965 (2005)

    ADS  CAS  Article  Google Scholar 

  9. Tielens, A. G. G. M., Waters, L. B. F. M., Molster, F. J. & Justtanont, K. Circumstellar silicate mineralogy. Astrophys. Space Sci. 255, 415–426 (1998)

    ADS  Article  Google Scholar 

  10. Gail, H.-P. & Sedlmayr, E. Mineral formation in stellar winds. I. Condensation sequence of silicate and iron grains in stationary oxygen rich outflows. Astron. Astrophys. 347, 594–616 (1999)

    ADS  CAS  Google Scholar 

  11. Toppani, A., Libourel, G., Robert, F., Ghanbaja, J. & Zimmermann, L. Synthesis of refractory minerals by high-temperature condensation of a gas of solar composition. Lunar Planet. Sci. Conf. XXXV, abstr. 1726 (2004)

    ADS  Google Scholar 

  12. Anders, E. & Grevesse, N. Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989)

    ADS  CAS  Article  Google Scholar 

  13. Abraham, F. F. Homogeneous Nucleation Theory 263 (Academic, New York, 1974)

    Google Scholar 

  14. Chen, L.-C. in Pulsed Laser Deposition of Thin Films (eds Chrisey, D. B. & Hubler, G. K.) 167–198 (John Wiley & Sons, New York, 1994)

    Google Scholar 

  15. McMillan, P. F. & Wolf, G. H. in Structure, Dynamics and Properties of Silicate Melts (eds Stebbins, J. F., McMillan, P. F. & Dingwell, D. B.) 247–315 (Mineralogical Society of America, Washington, USA, 1995)

    Book  Google Scholar 

  16. Ihinger, P. D., Hervig, R. L. & McMillan, P. F. in Volatiles in Magmas (eds Carroll, M. R. & Holloway, J. R.) 67–121 (Mineralogical Society of America, Washington, 1994)

    Book  Google Scholar 

  17. White, W. B. in The Infrared Spectra of Minerals (ed. Farmer, V. C.) 227–284 (Mineralogical Society 4, London, 1974)

    Book  Google Scholar 

  18. Kemper, F., Molster, F. J., Jäger, C. & Waters, L. B. F. M. The mineral composition and spatial distribution of the dust ejecta of NGC 6302. Astron. Astrophys. 394, 679–690 (2002)

    ADS  CAS  Article  Google Scholar 

  19. Wood, R. F., Leboeuf, J. N., Chen, K. R., Geohegan, D. B. & Puretzki, A. A. Dynamics of plume propagation, splitting, and nanoparticle formation during pulse-laser ablation. Appl. Surf. Sci. 127–129, 151–158 (1998)

    ADS  Article  Google Scholar 

  20. Payne, H. E., Philips, J. A. & Terzian, Y. A young planetary nebula with OH molecules: NGC 6302. Astrophys. J. 326, 368–375 (1988)

    ADS  CAS  Article  Google Scholar 

  21. Marret, S., Ceccarelli, C., Caux, E., Tielens, A. G. G. M. & Castets, A. Water emission in NGC 1333-IRAS4. The physical structure of the envelope. Astron. Astrophys. 395, 573–585 (2002)

    ADS  Article  Google Scholar 

  22. Cami, J. et al. CO2 emission in EP Aqr: Probing the extended atmosphere. Astron. Astrophys. 360, 562–574 (2000)

    ADS  CAS  Google Scholar 

  23. d'Hendecourt, L. B. & Jourdain de Muizon, M. The discovery of interstellar carbon dioxide. Astron. Astrophys. 223, L5–L8 (1989)

    ADS  CAS  Google Scholar 

  24. de Graauw, T. et al. SWS observations of solid CO2 in molecular clouds. Astron. Astrophys. 315, L345–L348 (1996)

    ADS  CAS  Google Scholar 

  25. Nisini, B., Codella, C., Giannini, T. & Richer, J. S. Observations of high-J SiO emission along the HH211 outflow. Astron. Astrophys. 395, L25–L28 (2002)

    ADS  CAS  Article  Google Scholar 

  26. van Dishoeck, E. F. ISO spectroscopy of gas and dust: from molecular clouds to protoplanetary disks. Annu. Rev. Astron. Astrophys. 42, 119–167 (2004)

    ADS  CAS  Article  Google Scholar 

  27. Gueth, F., Guilloteau, S., Dutrey, A. & Bachiller, R. Structure and kinematics of a protostar: mm-interferometry of L 1157. Astron. Astrophys. 323, 943–952 (1997)

    ADS  CAS  Google Scholar 

  28. Feigelson, E. D. & Montmerle, T. High-energy processes in young stellar objects. Annu. Rev. Astron. Astrophys. 37, 363–408 (1999)

    ADS  CAS  Article  Google Scholar 

  29. Molster, F. J. et al. The complete ISO spectrum of NGC 6302. Astron. Astrophys. 372, 165–172 (2001)

    ADS  CAS  Article  Google Scholar 

  30. Grossman, L. Condensation in the primitive nebula. Geochim. Cosmochim. Acta 36, 597–619 (1972)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

L. Zimmerman, R. Ruppen and F. Bendisari are thanked for technical help and J. Aléon, E. Deloule and J. Bradley for discussions. C. Kemper is thanked for providing the spectral data of NGC 6302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Toppani.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Discussion

This file contains a description of the analytical procedure for the transmission electron microscopy and for the mid and far-infrared spectroscopy. (DOC 28 kb)

Supplementary Figure Legends

This file contains legends for figures 1 to 6. (DOC 36 kb)

Supplementary Figure 1

This figure shows a schematic drawing of the experimental device. (PDF 18 kb)

Supplementary Figure 2

This figure shows the far-infrared spectrum (700–50 cm-1) of Ca-Al-rich material condensed in "wet" CO2 (25°C, 20 mbar H2O + 4 mbar CO2, 493 min). (PDF 173 kb)

Supplementary Figure 3

This figure shows the mid-infrared spectrum (4000–600 cm-1) of material condensed as a function of gas composition. (PDF 229 kb)

Supplementary Figure 4

This figure shows the mid-infrared spectrum (4000–600 cm-1) of material condensed as a function of duration of condensation. (PDF 230 kb)

Supplementary Figure 5

This figure shows the mid-infrared spectrum (4000–600 cm-1) of material condensed as a function of temperature of condensation. (PDF 257 kb)

Supplementary Figure 6

This figure shows the mid-infrared spectrum (4000–600 cm-1) of material condensed as a function of CO2 partial pressure. (PDF 226 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Toppani, A., Robert, F., Libourel, G. et al. A ‘dry’ condensation origin for circumstellar carbonates. Nature 437, 1121–1124 (2005). https://doi.org/10.1038/nature04128

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04128

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing