Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion


The processes causing the middle Miocene global cooling, which marked the Earth's final transition into an ‘icehouse’ climate about 13.9 million years ago (Myr ago)1,2,3,4, remain enigmatic. Tectonically driven circulation changes5,6 and variations in atmospheric carbon dioxide levels7,8 have been suggested as driving mechanisms, but the lack of adequately preserved sedimentary successions has made rigorous testing of these hypotheses difficult. Here we present high-resolution climate proxy records, covering the period from 14.7 to 12.7 million years ago, from two complete sediment cores from the northwest and southeast subtropical Pacific Ocean. Using new chronologies through the correlation to the latest orbital model9, we find relatively constant, low summer insolation over Antarctica coincident with declining atmospheric carbon dioxide levels at the time of Antarctic ice-sheet expansion and global cooling, suggesting a causal link. We surmise that the thermal isolation of Antarctica played a role in providing sustained long-term climatic boundary conditions propitious for ice-sheet formation. Our data document that Antarctic glaciation was rapid, taking place within two obliquity cycles, and coincided with a striking transition from obliquity to eccentricity as the drivers of climatic change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Palaeoceanographic records from ODP Sites 1146 and 1237 showing that Earth's orbital configuration was the prime pacer of middle Miocene climate change.
Figure 2: Signal evolution in time–frequency space of δ 18O and Fe in ODP Sites 1146 and 1237 and of eccentricity-tilt tuning target.
Figure 3: Expanded view of 14.2–13.7 Myr ago interval.

Similar content being viewed by others


  1. Flower, B. P. & Kennett, J. P. Middle Miocene ocean-climate transition: high resolution oxygen and carbon isotopic records from DSDP Site 588A, southwest Pacific. Paleoceanography 8, 811–843 (1993)

    Article  ADS  Google Scholar 

  2. Flower, B. P. & Kennett, J. P. Middle Miocene deep water paleoceanography in the southwest Pacific: Relations with East Antarctic ice sheet development. Paleoceanography 10, 1095–1112 (1995)

    Article  ADS  Google Scholar 

  3. Miller, K. G., Wright, J. D. & Fairbanks, R. G. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustacy and margin erosion. J. Geophys. Res. 96, 6829–6848 (1991)

    Article  ADS  Google Scholar 

  4. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Kennett, J. P. Cenozoic evolution of Antarctic glaciation, the Circum-Antarctic Ocean and their impact on global paleoceanography. J. Geophys. Res. 82, 3843–3860 (1975)

    Article  ADS  Google Scholar 

  6. Woodruff, F. & Savin, S. Mid-Miocene isotope stratigraphy in the deep sea: high resolution correlations, paleoclimatic cycles, and sediment preservation. Paleoceanography 6, 755–806 (1991)

    Article  ADS  Google Scholar 

  7. Raymo, M. E. & Ruddiman, W. F. Tectonic forcing of late Cenozoic climate. Nature 359, 117–122 (1992)

    Article  ADS  CAS  Google Scholar 

  8. Vincent, E. & Berger, W. H. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Broecker, W. S. & Sundquist, E. T.) 455–468 (Geophys. Monogr. Ser. 32, AGU, Washington DC, 1985)

    Google Scholar 

  9. Laskar, J. et al. A long term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004)

    Article  ADS  Google Scholar 

  10. Sugden, D. & Denton, G. Cenozoic landscape evolution of the Convoy Range to Mackay Glacier area, Transantarctic Mountains: Onshore to offshore synthesis. Geol. Soc. Am. Bull. 116, 840–857 (2004)

    Article  ADS  Google Scholar 

  11. Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperature and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Berger, W. H. & Jansen, E. in The Polar Oceans and their Role in Shaping the Global Environment (eds Johannessen, O. M., Muench, R. D. & Overland, J. E.) 295–311 (Geophys. Monogr. Ser. 85, AGU, Washington, DC, 1994)

    Google Scholar 

  13. Mudelsee, M. & Schulz, M. The Middle Pleistocene climate transition: onset of 100 kyr cycle lags ice volume buildup by 280 ka. Earth Planet. Sci. Lett. 151, 117–123 (1997)

    Article  ADS  CAS  Google Scholar 

  14. Shackleton, N. J. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289, 1897–1902 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Imbrie, J. et al. On the structure and origin of major glaciation cycles. 2. The 100,000 years cycle. Paleoceanography 8, 699–735 (1993)

    Article  ADS  Google Scholar 

  16. Raymo, M. E. & Nisancioglu, K. The 41 kyr world: Milankovitch's other unsolved mystery. Paleoceanography 18, 1011 doi:10.1029/2002PA00791 (2003)

    Article  ADS  Google Scholar 

  17. Loutre, M.-F., Paillard, D., Vimeux, F. & Cortijo, E. Does mean annual insolation have the potential to change the climate? Earth Planet. Sci. Lett. 221, 1–14 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Vimeux, F. et al. A 420,000 year deuterium excess record from East Antarctica: Information on past changes in the origin of precipitation at Vostok. J. Geophys. Res. 106, 31863–31873 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Hall, I. R., McCave, N., Shackleton, N. J., Weedon, G. P. & Harris, S. Intensified deep Pacific inflow and ventilation in Pleistocene glacial times. Nature 412, 809–812 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Hall, I. R. et al. Paleocurrent reconstruction of the deep Pacific inflow during the middle Miocene: Reflections of Antarctic Ice Sheet growth. Paleoceanography 18, 1040–1051 (2003)

    Article  ADS  Google Scholar 

  21. Shevenell, A. E., Kennett, J. P. & Lea, D. W. Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science 305, 1766–1770 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Kump, L. R. & Arthur, M. A. Interpreting carbon-isotope excursions: carbonate and organic matter. Chem. Geol. 161, 181–198 (1999)

    Article  ADS  CAS  Google Scholar 

  23. Müller, P. J. & Suess, E. Productivity, sedimentation rate, and sedimentary organic matter in the oceans. 1. Organic carbon preservation. Deep-Sea Res. A 26, 1347–1362 (1979)

    Article  ADS  Google Scholar 

  24. Jahnke, R. A. The global ocean flux of particulate organic carbon: Areal distribution and magnitude. Glob. Biogeochem. Cycles 10, 71–88 (1996)

    Article  ADS  CAS  Google Scholar 

  25. Coxhall, H. K., Wilson, P. A., Pälike, H., Lear, C. H. & Backman, J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–57 (2005)

    Article  ADS  Google Scholar 

  26. Zachos, J., Shackleton, N. J., Revenaugh, J. S., Pälike, H. & Flower, B. P. Climate response to orbital forcing across the Oligocene-Miocene boundary. Science 292, 274–278 (2001)

    Article  ADS  CAS  Google Scholar 

  27. Wang, P., Tian, J., Cheng, X., Liu, C. & Xu, J. Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology 31, 239–242 (2003)

    Article  ADS  CAS  Google Scholar 

  28. Pagani, M., Arthur, M. A. & Freeman, K. H. Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14, 273–292 (1999)

    Article  ADS  Google Scholar 

  29. Pearson, P. N. & Palmer, M. R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695–699 (2000)

    Article  ADS  CAS  Google Scholar 

  30. Ferraz- Mello, S. Estimation of periods from unequally spaced observations. Astron. J. 86, 619–624 (1981)

    Article  ADS  Google Scholar 

Download references


We thank the Shipboard Scientific Parties of the Ocean Drilling Program (ODP) Legs 184 and 202, J. Kennett, U. Röhl, M. Sarnthein, A. Shevenell, J. Schönfeld, J. Stoner and J. Zachos for discussions. This research used samples provided by the ODP, and was funded by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ann Holbourn.

Ethics declarations

Competing interests

Data sets are archived at WDC-MARE ( Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

Contains additional locality information, Supplementary Methods, Supplementary Data, Supplementary Figures 1–5 and Supplementary Tables 1–4. Derivation of astronomically-tuned age models for ODP Sites 1146 and 1237 and revised chronology for ODP Site 1171 are also presented. (PDF 5825 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holbourn, A., Kuhnt, W., Schulz, M. et al. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature 438, 483–487 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing