Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Adaptive evolution of non-coding DNA in Drosophila

Abstract

A large fraction of eukaryotic genomes consists of DNA that is not translated into protein sequence, and little is known about its functional significance. Here I show that several classes of non-coding DNA in Drosophila are evolving considerably slower than synonymous sites, and yet show an excess of between-species divergence relative to polymorphism when compared with synonymous sites. The former is a hallmark of selective constraint, but the latter is a signature of adaptive evolution, resembling general patterns of protein evolution in Drosophila1,2. I estimate that about 40–70% of nucleotides in intergenic regions, untranslated portions of mature mRNAs (UTRs) and most intronic DNA are evolutionarily constrained relative to synonymous sites. However, I also use an extension to the McDonald–Kreitman test3 to show that a substantial fraction of the nucleotide divergence in these regions was driven to fixation by positive selection (about 20% for most intronic and intergenic DNA, and 60% for UTRs). On the basis of these observations, I suggest that a large fraction of the non-translated genome is functionally important and subject to both purifying selection and adaptive evolution. These results imply that, although positive selection is clearly an important facet of protein evolution, adaptive changes to non-coding DNA might have been considerably more common in the evolution of D. melanogaster.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mean Tajima's D values for coding and non-coding DNA.
Figure 2: Quantifying adaptive divergence and selection intensity.

Similar content being viewed by others

References

  1. Fay, J. C., Wyckoff, G. J. & Wu, C. I. Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature 415, 1024–1026 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Smith, N. G. & Eyre-Walker, A. Adaptive protein evolution in Drosophila. Nature 415, 1022–1024 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. McDonald, J. & Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Carroll, S. B., Grenier, J. K. & Weatherbee, S. D. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design (Blackwell Science, Malden, Massachusetts, 2001)

    Google Scholar 

  6. Ludwig, M. et al. Functional evolution of a cis-regulatory module. PLoS Biol. 3, e93 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Miller, W., Makova, K., Nekrutenko, A. & Hardison, R. Comparative genomics. Annu. Rev. Genomics Hum. Genet. 5, 15–56 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Cliften, P. et al. Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. Genome Res. 11, 1175–1186 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. Gibbs, R. et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493–521 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Richards, S. et al. Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. Genome Res. 15, 1–18 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shabalina, S. & Kondrashov, A. Pattern of selective constraint in C. elegans and C. briggsae genomes. Genet. Res. 74, 23–30 (1999)

    Article  CAS  PubMed  Google Scholar 

  12. Clark, A. The search for meaning in noncoding DNA. Genome Res. 11, 1319–1320 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. Bustamante, C. et al. The cost of inbreeding in Arabidopsis. Nature 416, 531–534 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Haddrill, P. R., Halligan, D., Charlesworth, B. & Andolfatto, P. Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content. Genome Biol. 6, R67 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Halligan, D., Eyre-Walker, A., Andolfatto, P. & Keightley, P. Patterns of evolutionary constraints in intronic and intergenic DNA of Drosophila. Genome Res. 14, 273–279 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bachtrog, D. Sex chromosome evolution: molecular aspects of Y chromosome degeneration in Drosophila. Genome Res. 15, 1393–1401 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jareborg, N., Birney, E. & Durbin, R. Comparative analysis of noncoding regions of 77 orthologous mouse and human gene pairs. Genome Res. 9, 815–824 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bergman, C. & Kreitman, M. Analysis of conserved noncoding DNA in Drosophila reveals similar constraints in intergenic and intronic sequences. Genome Res. 11, 1335–1345 (2001)

    Article  CAS  PubMed  Google Scholar 

  19. Li, W. Molecular Evolution (Sinauer Associates, Sunderland, Massachusetts, 1997)

    Google Scholar 

  20. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, Cambridge, 1983)

    Book  Google Scholar 

  22. Charlesworth, B. The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet. Res. 63, 213–227 (1994)

    Article  CAS  PubMed  Google Scholar 

  23. Templeton, A. Contingency tests of neutrality using intra/interspecific gene trees: the rejection of neutrality for the evolution of the mitochondrial cytochrome oxidase II gene in the hominoid primates. Genetics 144, 1263–1270 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hudson, R., Kreitman, M. & Aguadé, M. A test of neutral molecular evolution based on nucleotide data. Genetics 116, 153–159 (1987)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Misra, S. et al. Annotation of the Drosophila melanogaster euchromatic genome: a systematic review. Genome Biol. 3, research0083.1-0083.22 (2002)

  26. Glinka, S., Ometto, L., Mousset, S., Stephan, W. & De Lorenzo, D. Demography and natural selection have shaped genetic variation in Drosophila melanogaster: a multi-locus approach. Genetics 165, 1269–1278 (2003)

    PubMed  PubMed Central  Google Scholar 

  27. Haddrill, P. R., Thornton, K. R., Charlesworth, B. & Andolfatto, P. Multilocus patterns on nucleotide variability and the demographic and selection history of Drosophila melanogaster populations. Genome Res. 15, 790–799 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu, J. et al. Minimal introns are not “junk”. Genome Res. 12, 1185–1189 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Charlesworth, B. Background selection and patterns of genetic diversity in Drosophila melanogaster. Genet. Res. 68, 131–149 (1996)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks D. Bachtrog for extensive comments on the manuscript and help with data quality issues, C. Bustamante and K. Thornton for providing code, and B. Ballard for Zimbabwe fly lines. P. Haddrill and K. Thornton assisted in designing primers for distal intergenic and coding regions, respectively. Thanks to B. Fischman for technical help, A. Betancourt, A. Kondrashov, A. Poon, D. Presgraves, M. Przeworski and S. Wright for critical comments on the manuscript, and L. Chao and J. Huelsenbeck for advice. Thanks also to the Washington University Genome Sequencing Center for providing unpublished D. simulans sequences. This work was funded in part by a research grant from the Biotechnology and Biological Sciences Research Council (UK) to P.A. The author is supported by an Alfred P. Sloan Fellowship in Molecular and Computational Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Andolfatto.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The author declares no competing financial interests.

Supplementary information

Supplementary Notes S1

Regions surveyed in this study. (PDF 157 kb)

Supplementary Notes S2

Assumptions of the McDonald-Kreitman test. (PDF 229 kb)

Supplementary Notes S3

Estimates and confidence limits of α and 2Nes. (PDF 91 kb)

Supplementary Notes S4

Estimating the rate of adaptation. (PDF 84 kb)

Supplementary Notes S5

Adjacent base contexts and rates of divergence. (PDF 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andolfatto, P. Adaptive evolution of non-coding DNA in Drosophila. Nature 437, 1149–1152 (2005). https://doi.org/10.1038/nature04107

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04107

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing