Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Low-latitude seasonality of Cretaceous temperatures in warm and cold episodes

Abstract

The Cretaceous period is generally considered to have been a time of warm climate1,2,3,4,5,6. Evidence for cooler episodes exists, particularly in the early Cretaceous period6,7,8, but the timing and significance of these cool episodes are not well constrained. The seasonality of temperatures is important for constraining equator-to-pole temperature gradients and may indicate the presence of polar ice sheets; however, reconstructions of Cretaceous sea surface temperatures are predominantly based on the oxygen isotopic composition of planktonic foraminifera1,2,3,4 that do not provide information about such intra-annual variations. Here we present intra-shell variations in δ18O values of rudist bivalves (Hippuritoidea) from palaeolatitudes between 8° and 31° N, which record the evolution of the seasonality of Cretaceous sea surface temperatures in detail. We find high maximum temperatures (35 to 37 °C) and relatively low seasonal variability (< 12 °C) between 20° and 30° N during the warmer Cretaceous episodes. In contrast, during the cooler episodes our data show seasonal sea surface temperature variability of up to 18 °C near 25° N, comparable to the range found today. Such a large seasonal variability is compatible with the existence of polar ice sheets.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Palaeo-positions of localities studied.
Figure 2: Intra-shell variation of δ 18 O and δ 13 C values in sclerochronological sections.
Figure 3: Ranges of δ 18 O values in sclerochronological sections of rudist bivalves.
Figure 4: Intra-shell variations in δ 18 O values and palaeotemperature seasonality as functions of palaeolatitude.

References

  1. Pearson, P. N. et al. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature 413, 481–487 (2001)

    ADS  CAS  Article  Google Scholar 

  2. Wilson, P. A. & Norris, R. D. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 412, 425–429 (2001)

    ADS  CAS  Article  Google Scholar 

  3. Norris, R. D., Bice, K. L., Magno, E. A. & Wilson, P. A. Jiggling the tropical thermostat in the Cretaceous hothouse. Geology 30, 299–302 (2002)

    ADS  Article  Google Scholar 

  4. Huber, B. T., Norris, R. D. & MacLeod, K. G. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30, 123–126 (2002)

    ADS  CAS  Article  Google Scholar 

  5. Poulsen, C. J. A balmy Arctic. Nature 432, 814–815 (2004)

    ADS  CAS  Article  Google Scholar 

  6. Frakes, L. A., Francis, J. E. & Syktus, J. I. Climate Modes of the Phanerozoic (Cambridge Univ. Press, Cambridge, 1994)

    Google Scholar 

  7. Kemper, E. Das Klima der Kreidezeit. Geol. Jb. A 96, 5–185 (1987)

    Google Scholar 

  8. Price, G. D. The evidence and implications of polar ice during the Mesozoic. Earth-Sci. Rev. 48, 183–210 (1999)

    ADS  Article  Google Scholar 

  9. Jenkyns, H. C., Forster, A., Schouten, S. & Sinninghe Damsté, J. S. High temperatures in the Late Cretaceous Arctic Ocean. Nature 432, 888–892 (2004)

    ADS  CAS  Article  Google Scholar 

  10. Pucéat, E. et al. Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels. Paleoceanography 18, 1029, doi:10.1029/2002PA000823 (2003)

    ADS  Article  Google Scholar 

  11. Schouten, S. et al. Extremely high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids. Geology 31, 1069–1072 (2003)

    ADS  CAS  Article  Google Scholar 

  12. Spicer, R. A. in The Cretaceous World (ed. Skelton, P. W.) (Cambridge Univ. Press, Cambridge, 2003)

    Google Scholar 

  13. McArthur, J. M., Howarth, R. J. & Bailey, T. R. Strontium isotope stratigraphy: Lowess Version 3: Best-fit to the marine Sr-isotope curve for 0 to 509 Ma and accompanying look-up table for deriving numerical age. J. Geol., 155–170 (2001)

  14. Gili, E., Masse, J.-P. & Skelton, P. W. Rudists as gregarious sediment-dwellers, not reef-builders, on Cretaceous carbonate platforms. Palaeogeogr. Palaeoclimatol. Palaeoecol. 118, 245–267 (1995)

    Article  Google Scholar 

  15. Steuber, T. Isotopic and chemical intra-shell variations in low-Mg calcite of rudist bivalves (Mollusca: Hippuritacea)—disequilibrium fractionations and Late Cretaceous seasonality. Int. J. Earth Sci. 88, 551–570 (1999)

    CAS  Article  Google Scholar 

  16. Steuber, T. & Rauch, M. Evolution of the Mg/Ca ratio of Cretaceous seawater—Implications from the composition of biological low-Mg calcite. Mar. Geol. 217, 199–213 (2005)

    ADS  CAS  Article  Google Scholar 

  17. Wefer, G. & Berger, W. H. Isotope paleontology: growth and composition of extant calcareous species. Mar. Geol. 100, 207–248 (1991)

    ADS  CAS  Article  Google Scholar 

  18. Lécuyer, C., Reynard, B. & Martineau, F. Stable isotope fractionation between mollusc shells and marine waters from Martinique Island. Chem. Geol. 213, 293–305 (2004)

    ADS  Article  Google Scholar 

  19. Clarke, L. J. & Jenkyns, H. C. New oxygen isotope evidence for long-term Cretaceous climatic change in the southern hemisphere. Geology 27, 702 (1999)

    ADS  Article  Google Scholar 

  20. Wilson, P. A. & Opdyke, B. N. Equatorial sea-surface temperatures for the Maastrichtian revealed through remarkable preservation of metastable carbonate. Geology 24, 555–558 (1996)

    ADS  CAS  Article  Google Scholar 

  21. Crowley, T. J. & Zachos, J. C. in Warm Climates in Earth History (eds Huber, B. T., MacLeod, K. G. & Wing, S. L.) 50–76 (Cambridge Univ. Press, Cambridge, 2000)

    Google Scholar 

  22. Poulsen, C. J., Barron, E. J., Peterson, W. H. & Wilson, P. A. A reinterpretation of mid-Cretaceous shallow marine temperatures through model-data comparison. Paleoceanography 14, 679–697 (1999)

    ADS  Article  Google Scholar 

  23. Poulsen, C. J., Barron, E. J., Johnson, C. C. & Fawcett, P. in Evolution of the Cretaceous Ocean/Climate System (eds Barrera, E. & Johnson, C. C.) 73–89 (GSA Spec. Pap. 332, Geological Society of America, Boulder, 1999)

    Google Scholar 

  24. DeConto, R. M., Thompson, S. L. & Pollard, D. in Warm Climates in Earth History 21–49 (Cambridge Univ. Press, Cambridge, 2000)

    Google Scholar 

  25. Masse, J. P. et al. in Atlas Tethys Palaeoenvironmental Maps (eds Dercourt, J., Ricou, L. E. & Vrielynck, B.) (BEICIP-FRANLAB, Rueil-Malmaison, 1993)

    Google Scholar 

  26. Camoin, G. et al. in Atlas Tethys Palaeoenvironmental Maps (eds Dercourt, J., Ricou, L. E. & Vrielynck, B.) (BEICIP-FRANLAB, Rueil-Malmaison, 1993)

    Google Scholar 

  27. Anderson, T. F. & Arthur, M. A. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. Soc. Econ. Paleont. Mineral. Short Course 10, 1-1–1–151 (1983)

    Google Scholar 

  28. Gradstein, F. M. et al. A Mesozoic time scale. J. Geophys. Res. B 99, 24051–24074 (1994)

    ADS  Article  Google Scholar 

  29. Obradovich, J. D. A Cretaceous time scale. Geol. Assoc. Can. Spec. Pap. 39, 379–396 (1993)

    Google Scholar 

  30. Ivany, L. C. et al. Intra-annual isotopic variation in Venericardia bivalves: Implications for early Eocene temperature, seasonality, and salinity on the U.S. Gulf Coast. J. Sedim. Res. 74, 7–19 (2004)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft. We thank D. Buhl, U. Schulte, B. Gehnen and B. Raczek for advice and support in the laboratory. We also thank J. Mutterlose for discussions. S. Özer and O. F. Geyer provided some of the studied specimens from Turkey and Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Steuber.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Table

The Supplementary Table contains details of localities, stratigraphy, taxonomy of specimens and geochemical data. It also contains palaeolatitudes and references for the derivation of palaeolatitudes and numerical ages for localities. (DOC 41 kb)

Supplementary Figure 1

The Supplementary Figure contains images of shell structures of a rudist bivalve to demonstrate the general morphology of the shell, the preservation of inner and outer shell layers and ultrastructural details. (DOC 2389 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Steuber, T., Rauch, M., Masse, JP. et al. Low-latitude seasonality of Cretaceous temperatures in warm and cold episodes. Nature 437, 1341–1344 (2005). https://doi.org/10.1038/nature04096

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04096

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing