Synthesis and properties of crosslinked recombinant pro-resilin

Abstract

Resilin is a member of a family of elastic proteins that includes elastin, as well as gluten, gliadin, abductin and spider silks. Resilin is found in specialized regions of the cuticle of most insects, providing low stiffness, high strain and efficient energy storage1,2; it is best known for its roles in insect flight3,4 and the remarkable jumping ability of fleas5,6 and spittle bugs7. Previously, the Drosophila melanogaster CG15920 gene was tentatively identified as one encoding a resilin-like protein8,9 (pro-resilin). Here we report the cloning and expression of the first exon of the Drosophila CG15920 gene as a soluble protein in Escherichia coli. We show that this recombinant protein can be cast into a rubber-like biomaterial by rapid photochemical crosslinking. This observation validates the role of the putative elastic repeat motif in resilin function. The resilience (recovery after deformation) of crosslinked recombinant resilin was found to exceed that of unfilled synthetic polybutadiene, a high resilience rubber. We believe that our work will greatly facilitate structural investigations into the functional properties of resilin and shed light on more general aspects of the structure of elastomeric proteins. In addition, the ability to rapidly cast samples of this biomaterial may enable its use in situ for both industrial and biomedical applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Purification and crosslinking of soluble recombinant rec1-resilin.
Figure 2: Dityrosine formation in crosslinked recombinant rec1-resilin.
Figure 3: Elastic properties of crosslinked recombinant resilin.
Figure 4: Real-time quantitative RT–PCR analysis of expression of the Drosophila CG15920 gene.

References

  1. 1

    Andersen, S. O. The crosslinks in resilin identified as dityrosine and trityrosine. Biochim. Biophys. Acta 93, 213–215 (1964)

    CAS  Article  Google Scholar 

  2. 2

    Gosline, J. et al. Elastic proteins: biological roles and mechanical properties. Phil. Trans. R. Soc. Lond. B 357, 121–132 (2002)

    CAS  Article  Google Scholar 

  3. 3

    Weis-Fogh, T. A rubber-like protein in insect cuticle. J. Exp. Biol. 37, 887–907 (1960)

    Google Scholar 

  4. 4

    Gorb, S. N. Serial elastic elements in the damselfly wing: mobile vein joints contain resilin. Naturwissenschaften 86, 552–555 (1999)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Neville, A. C. & Rothschild, M. Fleas—insects which fly with their legs. Proc. R. Entomol. Soc. Lond. 32, 9–10 (1967)

    Google Scholar 

  6. 6

    Rothschild, M. & Schlein, J. The jumping mechanism of Xenopsylla cheopis. I. Exoskeletal structures and musculature. Phil. Trans. R. Soc. Lond. B 271, 457–490 (1975)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Burrows, M. Biomechanics: froghopper insects leap to new heights. Nature 424, 509 (2003)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Ardell, D. H. & Andersen, S. O. Tentative identification of a resilin gene in Drosophila melanogaster. Insect Biochem. Mol. Biol. 31, 965–970 (2001)

    CAS  Article  Google Scholar 

  9. 9

    Andersen, S. O. in Elastomeric Proteins (eds Shewry, P. R., Tatham, A. S. & Bailey, A. J.) 259–278 (Cambridge Univ. Press, Cambridge, UK, 2002)

    Google Scholar 

  10. 10

    Weis-Fogh, T. Molecular interpretation of the elasticity of resilin, a rubber-like protein. J. Mol. Biol. 3, 520–531 (1961)

    CAS  Article  Google Scholar 

  11. 11

    Weis-Fogh, T. in The Cell and the Organism (eds Ramsay, J. A. & Wigglesworth, V. B.) 283–300 (Cambridge Univ. Press, Cambridge, UK, 1961)

    Google Scholar 

  12. 12

    Anderson, S. O. Covalent cross-links in a structural protein, resilin. Acta Physiol. Scand. Suppl. 263, 1–81 (1966)

    CAS  PubMed  Google Scholar 

  13. 13

    Li, B. & Daggett, V. Molecular basis for the extensibility of elastin. J. Muscle Res. Cell Motil. 23, 561–573 (2002)

    Article  Google Scholar 

  14. 14

    Rousseau, R., Schreiner, E., Kohlmeyer, A. & Marx, D. Temperature-dependent conformational transitions and hydrogen-bond dynamics of the elastin-like octapeptide GVG(VPGVG): A molecular-dynamics study. Biophys. J. 86, 1393–1407 (2004)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Pometun, M. S., Chekmenev, E. Y. & Wittebort, R. J. Quantitative observation of backbone disorder in native elastin. J. Biol. Chem. 279, 7982–7987 (2004)

    CAS  Article  Google Scholar 

  16. 16

    Young, D. & Bennet-Clark, H. C. The role of the tymbal in cicada sound production. J. Exp. Biol. 198, 1001–1019 (1995)

    CAS  PubMed  Google Scholar 

  17. 17

    Skals, N. & Surlykke, A. Sound production by abdominal tymbal organs in two moth species: The green silver-line and the scarce silver-line (Noctuoidea: Nolidae: Chloephorinae). J. Exp. Biol. 202, 2937–2949 (1999)

    CAS  PubMed  Google Scholar 

  18. 18

    Andersen, S. O. & Weis-Fogh, T. Resilin: a rubber-like protein in arthropod cuticle. Adv. Insect Physiol. 2, 1–65 (1964)

    CAS  Article  Google Scholar 

  19. 19

    Varman, A. R. Resilin in the cuticle of physogastric queen termites. Experientia 36, 564 (1980)

    Article  Google Scholar 

  20. 20

    Singaravelu, G. Occurrence of elastic protein resilin in the spermatophore walls of a tick Haemaphysalis intermedia. Natl Acad. Sci. Lett. (India) 14, 147–149 (1991)

    CAS  Google Scholar 

  21. 21

    Tatham, A. S. & Shewry, P. R. Comparative structures and properties of elastic proteins. Phil. Trans. R. Soc. Lond. B 357, 229–234 (2002)

    CAS  Article  Google Scholar 

  22. 22

    Malencik, D. A. & Anderson, S. R. Dityrosine formation in calmodulin: cross-linking and polymerization catalyzed by Arthromyces peroxidase. Biochemistry 35, 4375–4386 (1996)

    CAS  Article  Google Scholar 

  23. 23

    Fancy, D. A. & Kodadek, T. Chemistry for the analysis of protein–protein interactions: rapid and efficient cross-linking triggered by long wavelength light. Proc. Natl Acad. Sci. USA 96, 6020–6024 (1999)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Urry, D. W. et al. in Elastomeric Proteins (eds Shewry, P. R., Tatham, A. S. & Bailey, A. J.) 54–93 (Cambridge Univ. Press, Cambridge, UK, 2002)

    Google Scholar 

  25. 25

    Keeley, F. W., Bellingham, C. M. & Woodhouse, K. A. Elastin as a self-organising biomaterial: use of recombinantly expressed human elastin polypeptides as a model system for investigations of structure and self-assembly of elastin. Phil. Trans. R. Soc. Lond. B 357, 185–189 (2002)

    CAS  Article  Google Scholar 

  26. 26

    Neff, D., Frazier, S. F., Quimby, L., Wang, R. T. & Zill, S. Identification of resilin in the leg of cockroach, Periplaneta americana: confirmation by a simple method using pH dependence of UV fluorescence. Arthropod Struct. Dev. 29, 75–83 (2000)

    CAS  Article  Google Scholar 

  27. 27

    Cowie, J. M. G. Polymers: Chemistry and Physics of Modern Materials (Int. Textbook Co. Ltd, Aylesbury, 1973)

    Google Scholar 

  28. 28

    Aaron, B. B. & Gosline, J. M. Elastin as a random-network elastomer: a mechanical and optical analysis of single elastin fibers. Biopolymers 20, 1247–1260 (1980)

    Article  Google Scholar 

  29. 29

    Treloar, L. R. G. The Physics of Rubber Elasticity (Clarendon, Oxford, 1975)

    Google Scholar 

  30. 30

    Lehmann, F. O. & Dickinson, M. H. The production of elevated flight force compromises manoeuvrability in the fruit fly Drosophila melanogaster. J. Exp. Biol. 204, 627–635 (2001)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Abbenante for preparative scale reverse-phase HPLC purification of dityrosine and for mass spectrometry. The technical assistance of L. Conlan is acknowledged for HPLC analysis of dityrosine. We are grateful to A. Brownlee and R. Tellam for critical reading of the manuscript. This work was supported by a CSIRO Nanotechnology Emerging Sciences Initiative grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Elvin.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Suppplementary Notes

This file contains the Supplementary Methods and accompanying Supplementary Figures. (DOC 5736 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Elvin, C., Carr, A., Huson, M. et al. Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437, 999–1002 (2005). https://doi.org/10.1038/nature04085

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing