Evasion of intracellular host defence by hepatitis C virus

  • An Erratum to this article was published on 08 September 2005

Abstract

Viral infection of mammalian cells rapidly triggers intracellular signalling events leading to interferon α/β production and a cellular antiviral state. This ‘host response’ is our first line of immune defence against infection as it imposes several barriers to viral replication and spread. Hepatitis C virus (HCV) evades the host response through a complex combination of processes that include signalling interference, effector modulation and continual viral genetic variation. These evasion strategies support persistent infection and the spread of HCV. Defining the molecular mechanisms by which HCV regulates the host response is of crucial importance and may reveal targets for novel therapeutic strategies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Molecular processes that signal the host response to HCV infection.
Figure 2: Triggering IRF-3 activation by HCV through RIG-I or TLR3, and signalling control by NS3/4A.
Figure 3: HCV attenuates IFN signalling through multiple mechanisms.
Figure 4: HCV–host interactions regulate the host response and affect the outcome of HCV infection.

References

  1. 1

    Katze, M. G., He, Y. & Gale, M. Jr. Viruses and interferon: a fight for supremacy. Nature Rev. Immunol. 2, 675–687 (2002).

    CAS  Google Scholar 

  2. 2

    Sen, G. C. Viruses and interferons. Annu. Rev. Microbiol. 55, 255–281 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nature Immunol. 5, 987–995 (2004).

    CAS  Google Scholar 

  4. 4

    Cook, D. N., Pisetsky, D. S. & Schwartz, D. A. Toll-like receptors in the pathogenesis of human disease. Nature Immunol. 5, 975–979 (2004).

    CAS  Google Scholar 

  5. 5

    McCormick, C. J., Challinor, L., Macdonald, A., Rowlands, D. J. & Harris, M. Introduction of replication-competent hepatitis C virus transcripts using a tetracycline-regulable baculovirus delivery system. J. Gen. Virol. 85, 429–439 (2004).

    CAS  Google Scholar 

  6. 6

    Sumpter, R. et al. Regulating intracellular anti-viral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J. Virol. 79, 2689–2699 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature Immunol. 5, 730–737 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Li, K., Chen, Z., Kato, N., Gale, M. Jr & Lemon, S. M. Distinct poly-I: C and virus-activated signaling pathways leading to interferon-β production in hepatocytes. J. Biol. Chem. 280, 16739–16747 (2005).

    CAS  Google Scholar 

  9. 9

    Malmgaard, L. Induction and regulation of IFNs during viral infections. J. Interferon Cytokine Res. 24, 439–454 (2004).

    CAS  Google Scholar 

  10. 10

    Au, W. C., Moore, P. A., Lowther, W., Juang, Y. T. & Pitha, P. M. Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes. Proc. Natl Acad. Sci. USA 92, 11657–11661 (1995).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Lin, R., Heylbroeck, C., Genin, P., Pitha, P. M. & Hiscott, J. Essential role of interferon regulatory factor 3 in direct activation of RANTES chemokine transcription. Mol. Cell. Biol. 19, 959–966 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Richmond, A. NF-κB chemokine gene transcription and tumour growth. Nature Rev. Immunol. 2, 664–674 (2002).

    CAS  Google Scholar 

  13. 13

    Barnes, B. J., Moore, P. A. & Pitha, P. M. Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon alpha genes. J. Biol. Chem. 276, 23382–23390 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Kawai, T. et al. Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nature Immunol. 5, 1061–1068 (2004).

    CAS  Google Scholar 

  15. 15

    Tai, D. I. et al. Activation of nuclear factor κB in hepatitis C virus infection: implications for pathogenesis and hepatocarcinogenesis. Hepatology 31, 656–664 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Der, S. D., Zhou, A., Williams, B. R. G. & Silverman, R. H. Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays. Proc. Natl Acad. Sci. USA 95, 15623–15628 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Wang, C. et al. Alpha interferon induces distinct translational control programs to suppress hepatitis C virus RNA replication. J. Virol. 77, 3898–3912 (2002).

    Google Scholar 

  18. 18

    Shimazaki, T., Honda, M., Kaneko, S. & Kobayashi, K. Inhibition of internal ribosomal entry site-directed translation of HCV by recombinant IFN-α correlates with a reduced La protein. Hepatology 35, 199–208 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Guo, J., Bichko, V. & Seeger, C. Effect of alpha interferon on the hepatitis C virus replication. J. Virol. 75, 8516–8523 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Prabhu, R. et al. Interferon α-2b inhibits negative-strand RNA and protein expression from full-length HCV1a infectious clone. Exp. Mol. Pathol. 76, 242–252 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Foy, E. et al. Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. Proc. Natl Acad. Sci. USA 102, 2986–2991 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Smith, M. W. et al. Hepatitis C virus and liver disease: global transcriptional profiling and identification of potential markers. Hepatology 38, 1458–1467 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 435, 772–777 (2005).

    ADS  Google Scholar 

  24. 24

    McHutchison, J. G. & Patel, K. Future therapy of hepatitis C. Hepatology 36, S245–S252 (2002).

    PubMed  PubMed Central  Google Scholar 

  25. 25

    Walker, C. M. Comparative features of hepatitis C virus infection in humans and chimpanzees. Springer Semin. Immunopathol. 19, 85–98 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Bigger, C. B., Brasky, K. M. & Lanford, R. E. DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. J. Virol. 75, 7059–7066 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Su, A. I. et al. Genomic analysis of the host response to hepatitis C virus infection. Proc. Natl Acad. Sci. USA 99, 15669–15674 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Bigger, C. et al. Intrahepatic gene expression during chronic hepatits C virus infection in chimpanzees. J. Virol. 78, 13779–13792 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Tuplin, A., Wood, J., Evans, D. J., Patel, A. H. & Simmonds, P. Thermodynamic and phylogenetic prediction of RNA secondary structures in the coding region of hepatitis C virus. RNA 8, 824–841 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Fredericksen, B. et al. Activation of the inteferon-β promoter during hepatitis C virus RNA replication. Viral Immunol. 15, 29–40 (2001).

    Google Scholar 

  31. 31

    Blight, K. J., McKeating, J. A. & Rice, C. M. Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J. Virol. 76, 13001–13014 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Andrejeva, J. et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-β promoter. Proc. Natl Acad. Sci. USA 101, 17264–17269 (2004).

    ADS  CAS  Google Scholar 

  33. 33

    Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    ADS  CAS  Google Scholar 

  34. 34

    Gong, G., Waris, G., Tanveer, R. & Siddiqui, A. Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-κB. Proc. Natl Acad. Sci. USA 98, 9599–9604 (2001).

    ADS  CAS  Google Scholar 

  35. 35

    Sarcar, B., Ghosh, A. K., Steele, R., Ray, R. & Ray, R. B. Hepatitis C virus NS5A mediated STAT3 activation requires co-operation of Jak1 kinase. Virology 322, 51–60 (2004).

    CAS  Google Scholar 

  36. 36

    Zhu, H. et al. Gene expression associated with interferon α antiviral activity in an HCV replicon cell line. Hepatology 37, 1180–1188 (2003).

    CAS  Google Scholar 

  37. 37

    Delhem, N. et al. Activation of the interferon-inducible protein kinase PKR by hepatocellular carcinoma derived-hepatitis C virus core protein. Oncogene 20, 5836–5845 (2001).

    CAS  Google Scholar 

  38. 38

    Williams, B. R. PKR ; a sentinel kinase for cellular stress. Oncogene 18, 6112–6120 (1999).

    CAS  Google Scholar 

  39. 39

    Tanaka, Y. et al. Selective binding of hepatitis C virus core protein to synthetic oligonucleotides corresponding to the 5′ untranslated region of the viral genome. Virology 270, 229–236 (2000).

    CAS  Google Scholar 

  40. 40

    Barth, H. et al. Uptake and presentation of hepatitis C virus-like particles by human dendritic cells. Blood 105, 3605–3614 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Colonna, M., Trinchieri, G. & Liu, Y. J. Plasmacytoid dendritic cells in immunity. Nature Immunol. 5, 1219–1226 (2004).

    CAS  Google Scholar 

  42. 42

    Li, K. et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc. Natl Acad. Sci. USA 102, 2992–2997 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Ferreon, J. C., Ferreon, A. C., Li, K. & Lemon, S. M. Molecular determinants of TRIF proteolysis mediated by the hepatitis C virus NS3/4A protease. J. Biol. Chem. 280, 20483–20492 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Reed, K. E. & Rice, C. M. in Hepatitis C Virus (ed. Reesink, H. W.) 1–37 (Karger, Basel, 1998).

    Google Scholar 

  45. 45

    De Francesco, R. & Steinkuhler, C. Structure and function of the hepatitis C virus NS3–NS4A serine proteinase. Curr. Top. Microbiol. Immunol. 242, 149–169 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Foy, E. et al. Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease. Science 300, 1145–1148 (2003).

    ADS  CAS  Google Scholar 

  47. 47

    Sharma, S. et al. Triggering the interferon antiviral response through a novel IKK-related pathway. Science 300, 1148–1151 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Fitzgerald, K. A. et al. IKKɛ and TBK1 are essential components of the IRF3 signaling pathway. Nature Immunol. 4, 491–496 (2003).

    CAS  Google Scholar 

  49. 49

    Shoukry, N. H., Cawthon, A. G. & Walker, C. M. Cell-mediated immunity and the outcome of hepatitis C virus infection. Annu. Rev. Microbiol. 58, 391–424 (2004).

    CAS  Google Scholar 

  50. 50

    Duguay, D. et al. In vivo interferon regulatory factor 3 tumor suppressor activity in B16 melanoma tumors. Cancer Res. 62, 5148–5152 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Heylbroeck, C. et al. The IRF-3 transcription factor mediates Sendai virus-induced apoptosis. J. Virol. 74, 3781–3792 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Liang, T. J. & Heller, T. Pathogenesis of hepatitis C-associated hepatocellular carcinoma. Gastroenterology 127, S62–S71 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Zhu, H. & Liu, C. Interleukin-1 inhibits hepatitis C virus subgenomic RNA replication by activation of extracellular regulated kinase pathway. J. Virol. 77, 5493–5498 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Heim, M. H., Moradpour, D. & Blum, H. E. Expression of hepatitis C virus proteins inhibits signal transduction through the Jak–STAT pathway. J. Virol. 73, 8469–8475 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Blindenbacher, A. et al. Expression of hepatitis C virus proteins inhibits interferon α signaling in the liver of transgenic mice. Gastroenterology 124, 1465–1475 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Duong, F. H., Filipowicz, M., Tripodi, M., La Monica, N. & Heim, M. H. Hepatitis C virus inhibits interferon signaling through up-regulation of protein phosphatase 2A. Gastroenterology 126, 263–277 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Bode, J. G. et al. IFN-α antagonistic activity of HCV core protein involves induction of suppressor of cytokine signaling-3. FASEB J. 17, 488–490 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Alexander, W. S. Suppressors of cytokine signalling (SOCS) in the immune system. Nature Rev. Immunol. 2, 410–416 (2002).

    CAS  Google Scholar 

  59. 59

    Platanias, L. C. & Fish, E. N. Signaling pathways activated by interferons. Exp. Hematol. 27, 1583–1592 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Macdonald, A. & Harris, M. Hepatitis C virus NS5A: tales of a promiscuous protein. J. Gen. Virol. 85, 2485–2502 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Geiss, G. K. et al. Gene expression profiling of the cellular transcriptional network regulated by α/β interferon and its partial attenuation by the hepatitis C virus nonstructural 5A protein. J. Virol. 77, 6367–6375 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Khabar, K. S. et al. The alpha chemokine, interleukin 8, inhibits the antiviral action of interferon α. J. Exp. Med. 186, 1077–1085 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Polyak, S. J. et al. Hepatitis C virus nonstructural 5A protein induces interleukin-8, leading to partial inhibition of the interferon-induced antiviral response. J. Virol. 75, 6095–6106 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Polyak, S. J., Khabar, K. S., Rezeiq, M. & Gretch, D. R. Elevated levels of interleukin-8 in serum are associated with hepatitis C virus infection and resistance to interferon therapy. J. Virol. 75, 6209–6211 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Taylor, D. R., Shi, S. T., Romano, P. R., Barber, G. N. & Lai, M. M. C. Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science 285, 107–110 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Noguchi, T. et al. Effects of mutation in hepatitis C virus nonstructural protein 5A on interferon resistance mediated by inhibition of PKR kinase activity in mammalian cells. Microbiol. Immunol. 45, 829–840 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Gale, M. Jr et al. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol. Cell. Biol. 18, 5208–5218 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Gimenez-Barcons, M. et al. The oncogenic potential of hepatitis C virus NS5A sequence variants is associated with PKR regulation. J. Interferon Cytokine Res. 25, 152–164 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Sumpter, R., Wang, C., Foy, E., Loo, Y. -M. & Gale, M. J. Viral evolution and interferon resistance of hepatitis C virus RNA replication in a cell culture model. J. Virol. 78, 11591–11604 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Taguchi, T. et al. Hepatitis C virus NS5A protein interacts with 2′,5′-oligoadenylate synthetase and inhibits antiviral activity of IFN in an IFN sensitivity-determining region-independent manner. J. Gen. Virol. 85, 959–969 (2004).

    CAS  Google Scholar 

  71. 71

    Han, J. Q. & Barton, D. J. Activation and evasion of the antiviral 2′,5′ oligoadenylate synthetase/ribonuclease L pathway by hepatitis C virus mRNA. RNA 8, 512–525 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Han, J. Q., Wroblewski, G., Xu, Z., Silverman, R. H. & Barton, D. J. Sensitivity of hepatitis C virus RNA to the antiviral enzyme ribonuclease L is determined by a subset of efficient cleavage sites. J. Interferon Cytokine Res. 24, 664–676 (2004).

    CAS  Google Scholar 

  73. 73

    Farci, P. Hepatitis C virus. The importance of viral heterogeneity. Clin. Liver Dis. 5, 895–916 (2001).

    CAS  Google Scholar 

  74. 74

    Farci, P. et al. Early changes in hepatitis C viral quasispecies during interferon therapy predict the therapeutic outcome. Proc. Natl Acad. Sci. USA 99, 3081–3086 (2002).

    ADS  CAS  Google Scholar 

  75. 75

    Farci, P. et al. The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies. Science 288, 339–344 (2000).

    ADS  CAS  Google Scholar 

  76. 76

    Enomoto, N. et al. Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection. N. Engl. J. Med. 334, 77–81 (1996).

    CAS  Google Scholar 

  77. 77

    Pascu, M. et al. Sustained virological response in hepatitis C virus type 1b infected patients is predicted by the number of mutations within the NS5A-ISDR: a meta-analysis focused on geographical differences. Gut 53, 1345–1351 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Schinkel, J., Spoon, W. J. & Kroes, A. C. Meta-analysis of mutations in the NS5A gene and hepatitis C virus resistance to interferon therapy: uniting discordant conclusions. Antivir. Ther. 9, 275–286 (2004).

    CAS  Google Scholar 

  79. 79

    Blight, K. J., Kolykhalov, A. A. & Rice, C. M. Efficient inititation of HCV RNA replication in cell culture. Science 290, 1972–1974 (2000).

    ADS  CAS  Google Scholar 

  80. 80

    Appel, N., Pietschmann, T. & Bartenschlager, R. Mutational analysis of hepatitis C virus nonstructural protein 5A: potential role of differential phosphorylation in RNA replication and identification of a genetically flexible domain. J. Virol. 79, 3187–3194 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Mihm, S. et al. Interferon type I gene expression in chronic hepatitis C. Lab. Invest. 84, 1148–1159 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Fujita, T., Reis, L. F., Watanabe, N., Kimura, Y. & Taniguchi, T. Induction of the transcription factor IRF-1 and interferon-β mRNAs by cytokines and activators of second-messenger pathways. Proc. Natl Acad. Sci. USA 86, 9936–9940 (1986).

    ADS  Google Scholar 

  83. 83

    Schulz, O. et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433, 887–892 (2005).

    ADS  CAS  Google Scholar 

  84. 84

    Frese, M. et al. Interferon-γ inhibits replication of subgenomic and genomic hepatitis C virus RNAs. Hepatology 35, 694–703 (2002).

    CAS  Google Scholar 

  85. 85

    McHutchison, J. G. Understanding hepatitis C. Am. J. Manag. Care 10, S21–S29 (2004).

    PubMed  PubMed Central  Google Scholar 

  86. 86

    Zhong, J. et al. Robust hepatitis C virus infection in vitro. Proc. Natl. Acad. Sci. USA 102, 9294–9299 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Lidenbach, B. D. & Rice, C. M. Complete replication of hepatits C virus in cell culture. Science 309, 623–626 (2005).

    ADS  Google Scholar 

  88. 88

    Wakita, T. et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nature Med. 11, 791–796 (2005).

    CAS  Google Scholar 

  89. 89

    Pflugheber, J. et al. Regulation of PKR and IRF-1 during hepatitis C virus RNA replication. Proc. Natl Acad. Sci. USA 99, 4650–4655 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Kanazawa, N. et al. Regulation of hepatitis C virus replication by interferon regulatory factor 1. J. Virol. 78, 9713–9720 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    McWhirter, S. M. et al. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc. Natl Acad. Sci. USA 101, 233–238 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Yoneyama, M. et al. Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J. 17, 1087–1095 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Au, W. C., Yeow, W. S. & Pitha, P. M. Analysis of functional domains of interferon regulatory factor 7 and its association with IRF-3. Virology 280, 273–282 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Breiman, A. et al. Inhibition of RIG-I-dependent signaling to the interferon pathway during hepatitis C virus expression and restoration of signaling by IKKɛ. J. Virol. 79, 3969–3978 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Lemon and members of our laboratory for discussions and critical evaluation of this manuscript. The Gale laboratory is supported by grants from the NIH, the Ellison Medical Foundation and the Burroughs Wellcome Fund. M.G. is the Nancy C. and Jeffrey A. Marcus Scholar in Medical Research in Honor of Dr Bill S. Vowell.

Author information

Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gale, M., Foy, E. Evasion of intracellular host defence by hepatitis C virus. Nature 436, 939–945 (2005). https://doi.org/10.1038/nature04078

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing