Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

WntD is a feedback inhibitor of Dorsal/NF-κB in Drosophila development and immunity

Abstract

Regulating the nuclear factor-κB (NF-κB) family of transcription factors is of critical importance to animals, with consequences of misregulation that include cancer, chronic inflammatory diseases and developmental defects1. Studies in Drosophila melanogaster have proved fruitful in determining the signals used to control NF-κB proteins, beginning with the discovery that the Toll/NF-κB pathway, in addition to patterning the dorsal–ventral axis of the fly embryo, defines a major component of the innate immune response in both Drosophila and mammals2,3. Here, we characterize the Drosophila wntD (Wnt inhibitor of Dorsal) gene. We show that WntD acts as a feedback inhibitor of the NF-κB homologue Dorsal during both embryonic patterning and the innate immune response to infection. wntD expression is under the control of Toll/Dorsal signalling, and increased levels of WntD block Dorsal nuclear accumulation, even in the absence of the IκB homologue Cactus. The WntD signal is independent of the common Wnt signalling component Armadillo (β-catenin). By engineering a gene knockout, we show that wntD loss-of-function mutants have immune defects and exhibit increased levels of Toll/Dorsal signalling. Furthermore, the wntD mutant phenotype is suppressed by loss of zygotic dorsal. These results describe the first secreted feedback antagonist of Toll signalling, and demonstrate a novel Wnt activity in the fly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: wntD is expressed with D–V polarity, and is under the control of Toll signalling.
Figure 2: Overexpression of WntD blocks Dorsal protein activation independently of Cactus.
Figure 3: wntD knockout flies exhibit ectopic Dorsal activation.
Figure 4: wntD mutants show an aberrant response to microbial infection.

Similar content being viewed by others

References

  1. Hayden, M. S. & Ghosh, S. Signaling to NF-kappaB. Genes Dev. 18, 2195–2224 (2004)

    Article  CAS  Google Scholar 

  2. Beutler, B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430, 257–263 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Lemaitre, B. The road to Toll. Nature Rev. Immunol. 4, 521–527 (2004)

    Article  CAS  Google Scholar 

  4. Rushlow, C. A., Han, K., Manley, J. L. & Levine, M. The graded distribution of the dorsal morphogen is initiated by selective nuclear transport in Drosophila. Cell 59, 1165–1177 (1989)

    Article  CAS  Google Scholar 

  5. Morisato, D. & Anderson, K. V. The spatzle gene encodes a component of the extracellular signalling pathway establishing the dorsal-ventral pattern of the Drosophila embryo. Cell 76, 677–688 (1994)

    Article  CAS  Google Scholar 

  6. Belvin, M. P., Jin, Y. & Anderson, K. V. Cactus protein degradation mediates Drosophila dorsal-ventral signalling. Genes Dev. 9, 783–793 (1995)

    Article  CAS  Google Scholar 

  7. Stathopoulos, A., Van Drenth, M., Erives, A., Markstein, M. & Levine, M. Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell 111, 687–701 (2002)

    Article  CAS  Google Scholar 

  8. Llimargas, M. & Lawrence, P. A. Seven Wnt homologues in Drosophila: a case study of the developing tracheae. Proc. Natl Acad. Sci. USA 98, 14487–14492 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Ganguly, A., Jiang, J. & Ip, Y. T. Drosophila WntD is a target and an inhibitor of the Dorsal/Twist/Snail network in the gastrulating embryo. Development 132, 3419–3429 (2005)

    Article  CAS  Google Scholar 

  10. Gillespie, S. K. & Wasserman, S. A. Dorsal, a Drosophila Rel-like protein, is phosphorylated upon activation of the transmembrane protein Toll. Mol. Cell. Biol. 14, 3559–3568 (1994)

    Article  CAS  Google Scholar 

  11. Drier, E. A., Govind, S. & Steward, R. Cactus-independent regulation of Dorsal nuclear import by the ventral signal. Curr. Biol. 10, 23–26 (2000)

    Article  CAS  Google Scholar 

  12. Logan, C. Y. & Nusse, R. The Wnt signalling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004)

    Article  CAS  Google Scholar 

  13. Hamada, F. et al. Negative regulation of Wingless signalling by D-axin, a Drosophila homolog of axin. Science 283, 1739–1742 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Rusch, J. & Levine, M. Regulation of the dorsal morphogen by the Toll and torso signalling pathways: a receptor tyrosine kinase selectively masks transcriptional repression. Genes Dev. 8, 1247–1257 (1994)

    Article  CAS  Google Scholar 

  15. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996)

    Article  CAS  Google Scholar 

  16. Meng, X., Khanuja, B. S. & Ip, Y. T. Toll receptor-mediated Drosophila immune response requires Dif, an NF-kappaB factor. Genes Dev. 13, 792–797 (1999)

    Article  CAS  Google Scholar 

  17. Choe, K. M., Werner, T., Stoven, S., Hultmark, D. & Anderson, K. V. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296, 359–362 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell 4, 827–837 (1999)

    Article  CAS  Google Scholar 

  19. De Gregorio, E., Spellman, P. T., Tzou, P., Rubin, G. M. & Lemaitre, B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 21, 2568–2579 (2002)

    Article  CAS  Google Scholar 

  20. Green, C. et al. The necrotic gene in Drosophila corresponds to one of a cluster of three serpin transcripts mapping at 43A1.2. Genetics 156, 1117–1127 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lemaitre, B. et al. Functional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila. EMBO J. 14, 536–545 (1995)

    Article  CAS  Google Scholar 

  22. Bettencourt, R., Asha, H., Dearolf, C. & Ip, Y. T. Hemolymph-dependent and -independent responses in Drosophila immune tissue. J. Cell. Biochem. 92, 849–863 (2004)

    Article  CAS  Google Scholar 

  23. Lemaitre, B. et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc. Natl Acad. Sci. USA 92, 9465–9469 (1995)

    Article  ADS  CAS  Google Scholar 

  24. Gross, I., Georgel, P., Kappler, C., Reichhart, J. M. & Hoffmann, J. A. Drosophila immunity: a comparative analysis of the Rel proteins dorsal and Dif in the induction of the genes encoding diptericin and cecropin. Nucleic Acids Res. 24, 1238–1245 (1996)

    Article  CAS  Google Scholar 

  25. Mansfield, B. E., Dionne, M. S., Schneider, D. S. & Freitag, N. E. Exploration of host-pathogen interactions using Listeria monocytogenes and Drosophila melanogaster. Cell. Microbiol. 5, 901–911 (2003)

    Article  CAS  Google Scholar 

  26. Brandt, S. M. et al. Secreted bacterial effectors and host-produced Eiger/TNF drive death in a Salmonella-infected fruit fly. PLoS Biol 2, e418 (2004)

    Article  Google Scholar 

  27. Zambon, R. A., Nandakumar, M., Vakharia, V. N. & Wu, L. P. The Toll pathway is important for an antiviral response in Drosophila. Proc. Natl Acad. Sci. USA 102, 7257–7262 (2005)

    Article  ADS  CAS  Google Scholar 

  28. Zettervall, C. J. et al. A directed screen for genes involved in Drosophila blood cell activation. Proc. Natl Acad. Sci. USA 101, 14192–14197 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Rorth, P. Gal4 in the Drosophila female germline. Mech. Dev. 78, 113–118 (1998)

    Article  CAS  Google Scholar 

  30. Dionne, M. S., Ghori, N. & Schneider, D. S. Drosophila melanogaster is a genetically tractable model host for Mycobacterium marinum. Infect. Immun. 71, 3540–3550 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Brown for preparing WntD protein for antibody production; C-H. Wu and K. Xu for preliminary experiments with wntD; M. Fish for p-element transformations; J. Sekelsky and K. Golic for fly strains and vectors used in gene targeting; S. Roth, G. Zimmermann and the Developmental Studies Hybridoma Bank for antibodies; A. O'Reilly and the Bloomington Stock Center for fly stocks; and C. Logan and A. Mikels for reading of the manuscript. M.D.G. was supported by a Howard Hughes Medical Institute predoctoral fellowship and a Stanford Graduate Fellowship. This work was supported by grants from the NIH to R.N. and D.S.S. and by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roel Nusse.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

A description of methods used in performing wnt8 gene disruption and producing Wnt8 antibodies. (DOC 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, M., Dionne, M., Schneider, D. et al. WntD is a feedback inhibitor of Dorsal/NF-κB in Drosophila development and immunity. Nature 437, 746–749 (2005). https://doi.org/10.1038/nature04073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04073

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing