Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A role for lateral hypothalamic orexin neurons in reward seeking


The lateral hypothalamus is a brain region historically implicated in reward and motivation1,2,3,4, but the identity of the neurotransmitters involved are unknown. The orexins (or hypocretins) are neuropeptides recently identified as neurotransmitters in lateral hypothalamus neurons5,6. Although knockout and transgenic overexpression studies have implicated orexin neurons in arousal and sleep7, these cells also project to reward-associated brain regions, including the nucleus accumbens and ventral tegmental area8,9. This indicates a possible role for these neurons in reward function and motivation3,10, consistent with previous studies implicating these neurons in feeding6. Here we show that activation of lateral hypothalamus orexin neurons is strongly linked to preferences for cues associated with drug and food reward. In addition, we show that chemical activation of lateral hypothalamus orexin neurons reinstates an extinguished drug-seeking behaviour. This reinstatement effect was completely blocked by prior administration of an orexin A antagonist. Moreover, administration of the orexin A peptide directly into the ventral tegmental area also reinstated drug-seeking. These data reveal a new role for lateral hypothalamus orexin neurons in reward-seeking, drug relapse and addiction.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Morphine conditioned animals had significantly greater place preferences and Fos activated orexin neurons in the lateral hypothalamus than non-conditioned animals.
Figure 2: Activation of lateral hypothalamus orexin neurons by rPP reinstated an extinguished preference for morphine.
Figure 3: Orexin administration into the VTA reinstated an extinguished preference for morphine.


  1. Anand, B. K. & Brobeck, J. R. Hypothalamic control of food intake in rats and cats. Yale J. Biol. Med. 24, 123–140 (1951)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Olds, J. & Milner, P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 47, 419–427 (1954)

    CAS  Article  Google Scholar 

  3. DiLeone, R. J., Georgescu, D. & Nestler, E. J. Lateral hypothalmic neuropeptides in reward and drug addiction. Life Sci. 73, 759–768 (2003)

    CAS  Article  Google Scholar 

  4. Petrovich, G. D. & Gallagher, M. Amygdala subsystems and control of feeding behaviour by learned cues. Ann NY Acad. Sci. 985, 251–262 (2003)

    ADS  Article  Google Scholar 

  5. de Lecea, L. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl Acad. Sci. USA 95, 322–327 (1998)

    ADS  CAS  Article  Google Scholar 

  6. Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behaviour. Cell 92, 573–585 (1998)

    CAS  Article  Google Scholar 

  7. Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451 (1999)

    CAS  Article  Google Scholar 

  8. Peyron, C. et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10015 (1998)

    CAS  Article  Google Scholar 

  9. Fadel, J. & Deutch, A. Y. Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience 111, 379–387 (2002)

    CAS  Article  Google Scholar 

  10. Baldo, B. A., Daniel, R. A., Berridge, C. W. & Kelley, A. E. Overlapping distributions of orexin/hypocretin- and dopamine-beta-hydroxylase immunoreactive fibers in rat brain regions mediating arousal, motivation, and stress. J. Comp. Neurol. 464, 220–237 (2003)

    Article  Google Scholar 

  11. Harris, G. C. & Aston-Jones, G. Enhanced morphine preference following prolonged abstinence: association with increased Fos expression in the extended amygdala. Neuropsychopharmacology 28, 292–299 (2003)

    CAS  Article  Google Scholar 

  12. Harris, G. C. & Aston-Jones, G. Critical role for ventral tegmental glutamate in preference for a cocaine-conditioned environment. Neuropsychopharmacology 28, 73–76 (2003)

    CAS  Article  Google Scholar 

  13. Harris, G. C. & Aston-Jones, G. Altered motivation and learning following opiate withdrawal: evidence for prolonged dysregulation of reward processing. Neuropsychopharmacology 28, 865–871 (2003)

    CAS  Article  Google Scholar 

  14. Siegel, J. M. Hypocretin (orexin): role in normal behaviour and neuropathology. Annu. Rev. Psychol. 55, 125–148 (2004)

    Article  Google Scholar 

  15. Herrera, D. G. & Robertson, H. A. Activation of c-fos in the brain. Prog. Neurobiol. 50, 83–107 (1996)

    CAS  Article  Google Scholar 

  16. Espana, R. A., Valentino, R. J. & Berridge, C. W. Fos immunoreactivity in hypocretin-synthesizing and hypocretin-1 receptor-expressing neurons: effects of diurnal and nocturnal spontaneous waking, stress and hypocretin-1 administration. Neuroscience 121, 201–217 (2003)

    CAS  Article  Google Scholar 

  17. Smart, D. et al. SB-334867-A: the first selective orexin-1 receptor antagonist. Br. J. Pharmacol. 132, 1179–1182 (2001)

    CAS  Article  Google Scholar 

  18. Bevins, R. A. et al. Novel-object place conditioning: behavioural and dopaminergic processes in expression of novelty reward. Behav. Brain Res. 129, 41–50 (2002)

    CAS  Article  Google Scholar 

  19. Wang, B., Luo, F., Zhang, W. T. & Han, J. S. Stress or drug priming induces reinstatement of extinguished conditioned place preference. Neuroreport 11, 2781–2784 (2000)

    CAS  Article  Google Scholar 

  20. Campbell, R. E. et al. Orexin neurons express a functional pancreatic polypeptide Y4 receptor. J. Neurosci. 23, 1487–1497 (2003)

    CAS  Article  Google Scholar 

  21. Shalev, U., Grimm, J. W. & Shaham, Y. Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol. Rev. 54, 1–42 (2002)

    CAS  Article  Google Scholar 

  22. Korotkova, T. M., Sergeeva, O. A., Eriksson, K. S., Haas, H. L. & Brown, R. E. Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexin/hypocretins. J. Neurosci. 23, 7–11 (2003)

    CAS  Article  Google Scholar 

  23. Georgescu, D. et al. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J. Neurosci. 23, 3106–3111 (2003)

    CAS  Article  Google Scholar 

  24. Trivedi, P., Yu, H., MacNeil, D. J., Van der Ploeg, L. H. & Guan, X. M. Distribution of orexin receptor mRNA in the rat brain. FEBS Lett. 438, 71–75 (1998)

    CAS  Article  Google Scholar 

  25. Marcus, J. N. et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol. 435, 6–25 (2001)

    CAS  Article  Google Scholar 

  26. Carr, K. D. Augmentation of drug reward by chronic food restriction: behavioural evidence and underlying mechanisms. Physiol. Behav. 76, 353–364 (2002)

    CAS  Article  Google Scholar 

  27. Baldo, B. A. et al. Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment. Eur. J. Neurosci. 19, 376–386 (2004)

    Article  Google Scholar 

  28. Estabrooke, I. V. et al. Fos expression in orexin neurons varies with behavioural state. J. Neurosci. 21, 1656–1662 (2001)

    CAS  Article  Google Scholar 

  29. Rodgers, R. J. et al. SB-334867, a selective orexin-1 receptor antagonist, enhances behavioural satiety and blocks the hyperphagic effect of orexin-A in rats. Eur. J. Neurosci. 13, 1444–1452 (2001)

    CAS  Article  Google Scholar 

  30. Haynes, A. C. et al. A selective orexin-1 receptor antagonist reduces food consumption in male and female rats. Regul. Pept. 96, 45–51 (2000)

    CAS  Article  Google Scholar 

  31. Swanson, L. W. Brain Maps: Structure Of The Rat Brain (Elsevier, Amsterdam, 1992)

    Google Scholar 

Download references


We thank R. Shiekhattar and R. Smith for comments on the manuscript; and Y. Zhu and S. Aston-Jones for assistance with illustrations and photography. This work was supported by NIH.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Glenda C. Harris.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S1

Schematic representations of frontal sections showing the locations of neurons that stained for Fos and orexin. (PDF 174 kb)

Supplementary Figure S2

Low-power photomicrographs of the lateral hypothalamus (PDF 390 kb)

Supplementary Table S1

Orexin-Fos double labelling (DOC 21 kb)

Supplementary Figure Legends

Text to accompany the above Supplementary Figures (DOC 20 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harris, G., Wimmer, M. & Aston-Jones, G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437, 556–559 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing